import queue import gradio as gr import torch import threading from transformers import AutoTokenizer, AutoModelForCausalLM """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ checkpoint = "LemiSt/SmolLM-135M-instruct-de-merged" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16) class CustomIterable: def __init__(self): self._queue = queue.Queue() # Thread-safe queue self.first = True def put(self, item): """Add an element to the internal queue.""" if self.first: self.first = False else: self._queue.put(item) def end(self): """Signal that no more elements will be added.""" self._queue.put(None) # Sentinel value to indicate the end of the queue def __iter__(self): """Return the iterator (self in this case).""" return self def __next__(self): """Return the next element from the queue, blocking if necessary.""" try: item = self._queue.get(block=True) # Wait for an item except queue.Empty: raise StopIteration if item is None: # Sentinel value to end the iteration raise StopIteration return item def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, top_k, repetition_penalty ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) streamer = CustomIterable() inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", add_generation_prompt=True) thread = threading.Thread(target=model.generate, args=([inputs]), kwargs={"max_new_tokens": max_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, "streamer": streamer}) thread.start() response = "" for token in streamer: decoded = tokenizer.decode(token, skip_special_tokens=True) response += decoded yield response thread.join() """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="Du bist ein hilfreicher Assistent.", label="System message"), gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.4, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)", ), gr.Slider( minimum=16, maximum=1024, value=512, step=1, label="Top-k", ), gr.Slider( minimum=0.1, maximum=2.0, value=1.1, step=0.05, label="Repetition penalty", ), ], ) if __name__ == "__main__": demo.launch()