Spaces:
Sleeping
Sleeping
import queue | |
import gradio as gr | |
import torch | |
import threading | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
checkpoint = "LemiSt/SmolLM-135M-instruct-de-merged" | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16) | |
class CustomIterable: | |
def __init__(self): | |
self._queue = queue.Queue() # Thread-safe queue | |
self.first = True | |
def put(self, item): | |
"""Add an element to the internal queue.""" | |
if self.first: | |
self.first = False | |
else: | |
self._queue.put(item) | |
def end(self): | |
"""Signal that no more elements will be added.""" | |
self._queue.put(None) # Sentinel value to indicate the end of the queue | |
def __iter__(self): | |
"""Return the iterator (self in this case).""" | |
return self | |
def __next__(self): | |
"""Return the next element from the queue, blocking if necessary.""" | |
try: | |
item = self._queue.get(block=True) # Wait for an item | |
except queue.Empty: | |
raise StopIteration | |
if item is None: # Sentinel value to end the iteration | |
raise StopIteration | |
return item | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repetition_penalty | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
streamer = CustomIterable() | |
inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", add_generation_prompt=True) | |
thread = threading.Thread(target=model.generate, args=([inputs]), kwargs={"max_new_tokens": max_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, "streamer": streamer}) | |
thread.start() | |
response = "" | |
for token in streamer: | |
decoded = tokenizer.decode(token, skip_special_tokens=True) | |
response += decoded | |
yield response | |
thread.join() | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="Du bist ein hilfreicher Assistent.", label="System message"), | |
gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.4, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.9, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
gr.Slider( | |
minimum=16, | |
maximum=1024, | |
value=512, | |
step=1, | |
label="Top-k", | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=1.1, | |
step=0.05, | |
label="Repetition penalty", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |