LenDigLearn's picture
updated default sampling values
e65a3d7
import queue
import gradio as gr
import torch
import threading
from transformers import AutoTokenizer, AutoModelForCausalLM
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
checkpoint = "LemiSt/SmolLM-135M-instruct-de-merged"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16)
class CustomIterable:
def __init__(self):
self._queue = queue.Queue() # Thread-safe queue
self.first = True
def put(self, item):
"""Add an element to the internal queue."""
if self.first:
self.first = False
else:
self._queue.put(item)
def end(self):
"""Signal that no more elements will be added."""
self._queue.put(None) # Sentinel value to indicate the end of the queue
def __iter__(self):
"""Return the iterator (self in this case)."""
return self
def __next__(self):
"""Return the next element from the queue, blocking if necessary."""
try:
item = self._queue.get(block=True) # Wait for an item
except queue.Empty:
raise StopIteration
if item is None: # Sentinel value to end the iteration
raise StopIteration
return item
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
top_k,
repetition_penalty
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
streamer = CustomIterable()
inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", add_generation_prompt=True)
thread = threading.Thread(target=model.generate, args=([inputs]), kwargs={"max_new_tokens": max_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, "streamer": streamer})
thread.start()
response = ""
for token in streamer:
decoded = tokenizer.decode(token, skip_special_tokens=True)
response += decoded
yield response
thread.join()
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="Du bist ein hilfreicher Assistent.", label="System message"),
gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.4, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Slider(
minimum=16,
maximum=1024,
value=512,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.1,
step=0.05,
label="Repetition penalty",
),
],
)
if __name__ == "__main__":
demo.launch()