

How will we evaluate?

Each team can submit one demonstration video of less than 1 minute to showcase their
project. Upload your video to the Hugging Face Dataset in the LeRobot Worldwide
Hackathon community. Each team must also submit the datasets recorded during the
hackathon (if relevant). Instructions are provided on HF Org!

Hugging Face judges will select 30 projects based on the teams’ demonstration videos.
 The selection will consider the following criteria :

Creativity, Technical difficulty, Usability, and
Real-world Impact

On June 16, the 30 demos will be shared on Discord for community voting!
Everyone can cast their vote in a poll: just one vote per person, so choose your favorite team
wisely.

The teams with the most votes will win!

🥇 1st to 3rd teams: 1 Hope Jr Arm & 1 LeKiwi per team
🥈 4th and 5th teams: 1 Hope Jr Arm per team
🥉 6th to 24th: 1 LeKiwi per team
🥉 25th to 30th: 1 SO-101 per team

In collaboration with Seed Studio, a total prize value of €15,000, consisting of robotics
equipment and related hardware, will be awarded to the winning teams.

https://huggingface.co/LeRobot-worldwide-hackathon

1. Imitation Learning

1.1. Real world imitation learning

Why Choose This Track?

Imitation learning is a core component of the wave that has taken over robotics and AI.
Models like SmolVLA show how expert demonstrations from the real world, often messy,
diverse, and unstructured, can be turned into a robust foundation for training powerful robot
policies. Once finetuned, SmolVLA is able to replicate demonstrated behaviors
autonomously, allowing robots to perform complex tasks across varied environments.

Choosing this track will help you understand better how this technology works and how it can
be used to automate your own tasks.

Programming difficulty ⭐⭐

Need for creativity ⭐⭐⭐

Hardware requirements ⭐

What You’ll Do

➡ Participants will train their own robot to autonomously perform a new and original real
world task with imitation learning.

Our robots have already been deployed across a wide range of tasks, but this is just the
beginning. New tasks call for creativity, bold experimentation, and a willingness to push the
boundaries of what robots can do. This is where you step in: can you imagine a new and
original task for our robots to take on?

First, you will set up your robot (SO-100, SO-101, Koch, LeKiwi, etc.) and follow the “Getting
Started with a Real-World Robot” tutorial to learn how to record a dataset, train a model and
deploy it on your robot. You can start with a simple policy as ACT, and if you have enough
resources (time & compute), start experimenting on smolVLA.

You don’t have a robot supported by LeRobot but you’re still interested in imitation learning ?
This track is fully compatible with simulation environments, allowing you to explore and
develop without requiring any additional hardware !

Project Ideas

Come up with a creative real world task that one of the robots that are supported can
perform. To not limit your creativity we didn’t write down concrete examples here but it could
be anything the robot physically can perform !

https://huggingface.co/blog/smolvla
https://huggingface.co/docs/lerobot/en/getting_started_real_world_robot
https://huggingface.co/docs/lerobot/en/getting_started_real_world_robot

If you feel like you are already confident enough with building your dataset and training a
model, here are a few ideas you can dig further :

💭 Asynchronous inference - Introduced along with smolVLA it allows for a more

dynamic and a better adaptation of the robot actions, even with a remote inference
server. What about testing it on your own model ?

💭 Online corrections - With the new SO-101 leader arm, it is now possible to preempt
the follower when evaluating a policy. This feature can be used to create new
datasets accounting for situations that were not correctly encapsulated by the initial
learning dataset;

💭 Data augmentation - An alternative to create more robust and diverse datasets,
whether it be on real world or simulated data.

Hardware Requirements (mandatory)

 A leader robot and a follower robot supported by LeRobot: SO-100, SO-101, Koch,

LeKiwi

 Several cameras: smartphone and laptop cameras, USB webcams, etc.

 Access to a local GPU or to Google Collab

Resources

💡 Getting Started with a Real-World Robot

💡 Imitation learning on Real-World robots

💡 Imitation learning in Simulation

💡 Finetune SmolVLA

💡 Asynchronous inference PR

💡 Notebook to train ACT on Google Collab without Hugging Face GPU credits Don’t

forget to clone the notebook before using it !

💡 Notebook to train smolVLA on Google Collab without Hugging Face GPU credits

Don’t forget to clone the notebook before using it !

💡 Training LeRobot on a Hugging Face compute space with Hugging Face GPU

credits

Advisors
📖 From Hugging Face: Dana Aubakirova (dana_55517), Francesco Capuano

(fracapuano), Steven Palma (imstevenpm)

📖 From the community: Ville Kuosmanen (v_bananasocks), Alexandre Chapin

(alexc1342), Marina Barannikov (mnabnv)

https://huggingface.co/docs/lerobot/en/getting_started_real_world_robot
https://huggingface.co/docs/lerobot/il_robots
https://huggingface.co/docs/lerobot/il_sim
https://huggingface.co/docs/lerobot/smolvla
https://github.com/huggingface/lerobot/pull/1196
https://colab.research.google.com/github/huggingface/notebooks/blob/main/lerobot/training-act.ipynb
https://colab.research.google.com/github/huggingface/notebooks/blob/main/lerobot/training-smolvla.ipynb
https://docs.google.com/document/d/1WyRG0Yq26jIvEb23ukI2BLOPc_FF22AGOav5Kes0nzk/edit?usp=sharing
https://docs.google.com/document/d/1WyRG0Yq26jIvEb23ukI2BLOPc_FF22AGOav5Kes0nzk/edit?usp=sharing

2. Reinforcement Learning

2.1. HIL-SERL in simulation

Why Choose This Track?

You don’t have an SO-100/SO-101 with you for the hackathon, but you’re excited about
reinforcement learning? You love diving deep into source code and implementation details?
Then this track is for you ☺

Ever wanted to train a virtual robot to perform complex tasks with near-perfect precision in
just minutes? With Human-In-the-Loop Reinforcement Learning (HIL-RL) in simulation, you
can achieve 100% success rates for manipulation tasks !

This approach dramatically improves sample efficiency. After only a few minutes of
human-in-the-loop training, your policy may already be executing the task autonomously !
The track is beginner-friendly yet very satisfying: you’ll watch your AI trainee go from flailing
to fluent in real time.

Programming difficulty ⭐⭐

Need for creativity ⭐⭐⭐

Hardware requirements ⭐

What You’ll Do

➡ Participants will use the LeRobot HIL-SERL implementation to train robotic policies in
simulation.

HIL-SERL combines human demonstrations and real-time interventions with reinforcement
learning to rapidly learn robust behaviors.

You’ll experiment freely: no hardware required, no risk of damaging a robot, and instant
feedback on your ideas. Using the Gym-HIL suite from Hugging Face, you’ll teleoperate a
simulated robot (e.g. a virtual Franka Panda arm) to provide demonstrations and corrective
feedback. You'll start with provided environments and pretrained HIL-SERL models, then
innovate with your own ideas.

Project Ideas

1. Use a Pretrained Policy

Start with a pretrained HIL-SERL policy as a baseline (e.g. the pick-and-lift task), and adapt
it to handle variations, such as different cube starting positions.

https://github.com/huggingface/gym-hil
https://www.youtube.com/watch?v=99sVWGECBas

2. Extend the Gym-HIL Suite

Add new tasks such as:

💭 Pushing a cube into a notch

💭 Insertion tasks

💭 Pick-and-move tasks

3. Improve the Visual Backbone

The current experiments use a pretrained ResNet-10 image encoder. You could experiment
with stronger open-source vision models available on the Hugging Face Hub to speed up
training and improve generalization.

4. Simulate SO-101 Tasks

Implement SO-101 tasks in simulation using Gym-HIL and train a policy end-to-end.

5. Design intermediate reward and demonstrate their usefulness

Hardware Requirements

 Access to a local NVIDIA GPU (mandatory)

 A system supporting MuJoCo (mandatory)

 A Linux-based system (recommended)

 A gamepad for interventions (strongly recommended)

⚠ Keyboard teleoperation is not supported on MacOS ⚠

Resources

💡 HIL-SERL Real Robot Training Workflow Guide

💡 Train RL in Simulation

💡 HIL-SERL paper

Advisors

📖 From Hugging face: Michel Aractingi (michel.aractingi), Adil Zouitine (__boringguy__)

📖 From the community: Khalil Meftah (_lilkm), Eugene Mironov (eugenemironov), Ke

Wang (kewang1250)

https://huggingface.co/docs/lerobot/hilserl
https://huggingface.co/docs/lerobot/hilserl_sim
https://hil-serl.github.io/static/hil-serl-paper.pdf

2.2. Real world HIL-SERL (SO-100/SO-101)

Why Choose This Track?

Want to train your first reinforcement learning policy on a real robot, with no simulation or
sim2real transition required? This track is for you ☺

Ever wanted to observe your robot progressively learning a new task through the guidance
of your corrections ? With real world Human-In-the-Loop Reinforcement Learning (HIL-RL),
you’ll get the chance to witness an embodied aha moment !

As for simulation, this approach dramatically improves sample efficiency. After a few minutes
of human-in-the-loop training, you may start noticing the first signs of autonomous learning
and adaptation in your policy. The track involves much more hands-on work, but is highly
rewarding: you’ll follow your robot trainee progression in real time.

Programming difficulty ⭐⭐⭐

Need for creativity ⭐

Hardware requirements ⭐⭐

What You’ll Do

➡ Participants will teach their own robot to perform a task through human interaction and
reinforcement learning.

You’ll first provide a few successful demonstrations to your policy using either a second
robotic arm in leader–follower mode, or a gamepad or a keyboard for manual control. The
HIL-SERL system helps you record successful and failed episodes while training a reward
classifier to recognize success based on your demonstrations.

Then, you’ll launch the HIL-SERL training loop and the robot will begin to perform the task
on its own. Your job? Intervene when needed to guide the robot away from mistakes -
reinforcement learning takes care of the rest.

Project Ideas

Start with basic manipulation tasks, such as:

👉 Pick-and-lift (a cube or ball from the table)

👉 Push to target

👉 Press a button

Once you have a working policy, you can try:
1. Integrating pretrained Vision-Language Actions architectures

https://x.com/RemiCadene/status/1900547667362808292

2. Improving the reward model

Move from sparse to shaped or intermediate rewards to better handle long-horizon tasks.

3. Creating general reward models that work across multiple tasks

4. Tackling complex manipulation tasks

Example: block stacking (requires two-stage precision and sub-task structuring).

5. Upgrading the image encoder baseline

Currently uses ResNet-10 - Experiment with open-source vision models from the Hugging
Face Hub.

 6. Improve automatic take-over with the So101 leader arm.

Current modes of teleoperation in our RL stack contain a leader_automatic mode. The
goal is to be able to automatically grab the leader arm while it's tracking the follower and
intervene. Your task would be to improve this function to further make online learning
smoother.

Hardware Requirements

 Access to a local NVIDIA GPU (mandatory)

 A Linux-based system (recommended)

 Several cameras: smartphone and laptop cameras, USB webcams, etc. (mandatory)

 A leader robot and a follower robot supported by LeRobot: SO-100 or

SO-101(follower robot mandatory, leader robot recommended)

 A gamepad for interventions (strongly recommended with only a follower robot)

⚠ Keyboard teleoperation is not supported on MacOS ⚠

Resources

💡 Getting Started with a Real-World Robot

💡 HIL-SERL Real Robot Training Workflow Guide

💡 HIL-SERL paper

Advisors

https://huggingface.co/docs/lerobot/en/getting_started_real_world_robot
https://huggingface.co/docs/lerobot/hilserl
https://hil-serl.github.io/static/hil-serl-paper.pdf

📖 From Hugging face: Michel Aractingi (michel.aractingi), Adil Zouitine (__boringguy__)

📖 From the community: Khalil Meftah (_lilkm), Eugene Mironov (eugenemironov), Ke

Wang (kewang1250)

3. Create and integrate a new/existing
robot/teleoperator to LeRobot

Why Choose This Track?

Adding support for capable robots enables the open source community to extend their use of
LeRobot and to experiment cutting-edge algorithms. With this track, we want to challenge
the participants to further extend LeRobot scope by integrating a new robot or teleoperator
among its supported platforms. This kind of project is especially convinient because it gives
you the flexibility to either design and build a new robot from scratch or integrate an existing
one into the LeRobot ecosystem.

This track is a great opportunity to dive deeper into the foundations of robotics, exploring key
areas like mechanics, electronics, control systems. Furthermore, the integration part will
provide you with a deeper understanding of LeRobot codebase and its brand new
middleware.

If you feel like robots are not your thing, you might consider focusing on developing a
teleoperation system instead !

Programming difficulty ⭐

Need for creativity ⭐⭐

Hardware requirements ⭐⭐⭐

What You’ll Do

➡ Participants will integrate a newly created or existing robot/teleoperator in LeRobot
library.

If you follow this track, you will either :

👉 Create your own robot and make it compatible with LeRobot

Design your own robot with Feetech or Dynamixel motors (already supported in LeRobot)
and show off its capabilities using the LeRobot library.

👉 Add an existing robot to LeRobot library

Add an existing robot to LeRobot by creating a new motorbus class (following Feetech and
Dynamixel examples) and a new class for the robot, inheriting from the `Robot` base class. If
you have time you can even try to carefully teleoperate the robot or even record a dataset !

👉 Explore teleoperating devices (teleoperators)

Create a teleoperation device and/or add an existing teleoperation device to LeRobot by
creating a new class for the teleoperator, inheriting from the `Teleoperator` base class.

Project Ideas

There are many widespread robotic platforms waiting to be ported on LeRobot, and even
more new robots to design, build and integrate as well ! As this track encompasses a wide
diversity of robots, we didn’t want to constrain the possibilities to a finite bullet points list.

On the teleoperation devices side however, here are a few accessible ideas to investigate:

💭 Use the IMU embedded in every modern smartphones;

💭 Use a VR set, a keyboard, a game controller,...

💭 Use a digital twin running in simulation.

Hardware Requirements

Creating a new robot/teleoperator ?

 Access to a 3D CAD software and a 3D printer

 Motors for the robot (Dynamixel/Feetech)

 Sensors for the teleoperator

Using an existing robot/teleoperator ?

 The robot/teleoperator itself !

Resources

💡 Getting Started with a Real-World Robot

💡 Bring your Own Hardware - Adding new hardware in LeRobot

💡 Links to the Robot and MotorBus classes implementation

💡 SO-arms and LeKiwi CAD files and BOMs starting point for a new robot

💡 HopeJr CAD files and BOM starting point for a new robot

💡 Teleoperation using a VR set idea for a new teleoperator

💡 Teleoperation using a digital twin idea for a new teleoperator

Advisors

📖 From Hugging face: Simon Alibert (syx6820), Pepijn Kooijmans (pepijn8041), Martino

Russi (nepyope.)

https://huggingface.co/docs/lerobot/en/getting_started_real_world_robot
https://huggingface.co/docs/lerobot/integrate_hardware
https://github.com/huggingface/lerobot/blob/main/lerobot/common/robots/robot.py
https://github.com/huggingface/lerobot/blob/main/lerobot/common/motors/motors_bus.py
https://github.com/TheRobotStudio/SO-ARM100
https://github.com/TheRobotStudio/HOPEJr
https://github.com/DipFlip/telegrip
https://huggingface.co/spaces/blanchon/LeRobot-Arena/blob/main/src/lib/components/3d/Robot.svelte

4. Hardware improvement

Why Choose This Track?

Opening the door for more people to own robots and experiment with automation broadens
participation in the robotics ecosystem, and accelerates the improvement of existing robots.
Enhanced mechanical and electrical designs, additional sensors and modular features -
There are numerous ways to make open-sourced robots more efficient, and more flexible for
emerging tasks and novel use cases.

By choosing this track, you’re going to join this community effort yourself, and to put forward
an hardware improvement on an existing open source robot design (SO-arms, Koch,
LeKiwi).

Programming difficulty ⭐

Need for creativity ⭐⭐⭐

Hardware requirements ⭐⭐

What You’ll Do

➡ Participants will suggest and implement a hardware improvement on one of the robot
designs supported in LeRobot library.

In this track, you’ll be challenged to come up with your own original hardware improvement to
one of LeRobot supported robot models. This could mean tuning its performance, adding new
features, or adapting it to a new use case.

As these models are open-source, you may change anything:

👉 Tweak the electrical and mechanical designs: new motors, new materials, new 3D

models,...

👉 Create additional attachments or tools such as camera mounts or grippers.

👉 Add new sensors with the appropriate attachment, communication tools and power

supply.

Project Ideas

The projects of this track can go as far as your creativity goes. Here’s a few ideas if you’re
struck with a writer’s block:

1. Investigate hardware improvements on LeKiwi

Because it combines mobility with object manipulation, LeKiwi offers much room for
hardware improvements :

💭 Create a new open-source omniwheel design;

💭 Improve cable routing, communication performances and power management;

💭 Improve the teleoperation experience with an overview camera on the back.

2. Create a versatile camera mount suitable for multiple robots and cameras

And with other features : different view angles and positions, automatic light adaptation,

implicit stereo-vision,...

3. Add new sensors to LeRobot !

The community has been asking for it since almost day one - It is time to bring in new
sensors in LeRobot library ! Here’s a few ideas to find inspiration :

💭 Depths cameras, LIDARs and other sensors to get depth frames or point clouds;

💭 Microphones (contact microphones, MEMS, electret microphones);

💭 Tactile and force sensors;

💭 Event cameras.

Hardware Requirements

 A robot supported by LeRobot: SO-100, SO-101, Koch, LeKiwi (mandatory)

 Access to a 3D CAD software and a 3D printer (if needed)

 New sensors (if needed)

Resources

💡 Getting Started with a Real-World Robot

💡 Documentation on cameras in LeRobot for new cameras and sensors integration

💡 An example showing how to add a camera view to a dataset for new cameras and

sensors integration

💡 Adding microphones and audio in LeRobot PR

⚠ Experimental - Contact Caroline on Discord (nahkriin_caroline) ⚠

💡 SO-arms and LeKiwi CAD files and BOMs

💡 HopeJr CAD files and BOM

https://huggingface.co/docs/lerobot/en/getting_started_real_world_robot
https://huggingface.co/docs/lerobot/cameras
https://github.com/huggingface/lerobot/blob/main/examples/lekiwi/record.py
https://github.com/huggingface/lerobot/pull/967
https://github.com/TheRobotStudio/SO-ARM100
https://github.com/TheRobotStudio/HOPEJr

Advisors

📖 From Hugging Face: Caroline Pascal (nahkriin_caroline), Pepijn Kooijmans

(pepijn8041)

5. Datasets tools improvement

Why Choose This Track?

Datasets are the foundation of embodied AI, as they enable models to learn from sensory
experiences and interactions within physical or virtual environments. High-quality datasets
provide the multimodal information necessary for robots to perceive, reason, and act
effectively. Improving and creating tools to streamline data collection, simplify dataset
curation and boarden recorded modalities is crucial to train robust, generalizable, and
adaptive models.

With this track you’re going to delve into the range of possibilities for improving the
data—whether in terms of the data itself or the user experience.

Programming difficulty ⭐⭐

Need for creativity ⭐⭐

Hardware requirements ⭐⭐

What You’ll Do

➡ Participants will create or improve a tool supporting the creation or enhancement of
datasets.

Tools related to datasets are diverse, and may be improved in several ways. For this
hackathon, we would like to stress the following leads :

👉 Make data collection easier, more efficient, and less alienating;

👉 Simplify datasets modification and enhancement thanks to edition or data

augmentation tools;

👉 Diversify recordable modalities by adding support for new sensors and data types.

Once you’ve identified the track that resonates most with you, you’ll be asked to propose a
new tool or improve an existing one to address a challenge related to dataset creation.

Project Ideas

1. Make the recording of datasets funnier or more efficient

For instance, one could train another robot to automatically reset the training environment
between two episodes recordings, or guide the user towards unseen situations to generate
the next episode initial setting.

2. Streamline dataset edition in an informed way

The ultimate goal of this project would be to GUI (e.g. a HF space) to facilitate dataset
editing (delete/crop episode, merge datasets, rename observations, etc.) and data
augmentation. It could then be improved with a tool to evaluate the quality of an episode
inside a dataset.

3. Improve hardware interfaces

Tired of CLI tools ? Create a HF space in which you could connect a robot using Webusb
and this cool library created by Tim Qian from the community: feetech.js !

4. Add new sensors support in LeRobotDataset

Following up on track 4, adding new sensors to LeRobot library also means adding support
for the recorded modalities, including (but not limited to):

💭 Depth frames support;

💭 Point clouds support;

💭 Time series support (audio data, force/vibration/tactile sensors, etc.);

💭 Event-based data support;

Hardware Requirements

 A leader robot and a follower robot supported by LeRobot: SO-100, SO-101, Koch,

LeKiwi (if needed)

 New sensors (if needed)

Resources

💡 LeRobot datasets visualizer

💡 Getting Started with a Real-World Robot (if needed)

💡 Documentation on cameras in LeRobot for new cameras and sensors integration

(robot side)

💡 An example showing how to add a camera view to a dataset for new cameras and

sensors integration (robot side)

💡 Link to the Camera class implementation

💡 Link to LeRobotDataset class implementation

💡 A GUI for deleting episodes/frames in a dataset

💡 Information on how to create a HF space

💡 Javascript library you can use in HF spaces to communicate with motors: feetech.js

💡 An interesting interpretability visualization tool

https://github.com/timqian/bambot/tree/main/feetech.js
https://huggingface.co/spaces/lerobot/visualize_dataset
https://huggingface.co/docs/lerobot/en/getting_started_real_world_robot
https://huggingface.co/docs/lerobot/cameras
https://github.com/huggingface/lerobot/blob/main/examples/lekiwi/record.py
https://github.com/huggingface/lerobot/blob/main/lerobot/common/cameras/camera.py
https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/lerobot_dataset.py
https://github.com/villekuosmanen/pikodata
https://huggingface.co/docs/hub/en/spaces-overview
https://github.com/timqian/bambot/tree/main/feetech.js
https://github.com/villekuosmanen/physical-AI-attention-mapper

Advisors

📖 From Hugging Face: Caroline Pascal (nahkriin_caroline), Pepijn Kooijmans

(pepijn8041), Steven Palma (imstevenpm)

📖 From the community: Ville Kuosmanen (v_bananasocks)

	
	How will we evaluate?
	1.​Imitation Learning
	1.1.​Real world imitation learning
	Why Choose This Track?
	
	What You’ll Do
	
	Project Ideas
	Hardware Requirements (mandatory)
	Resources
	Advisors

	2.​Reinforcement Learning
	2.1.​HIL-SERL in simulation
	Why Choose This Track?
	
	What You’ll Do
	
	Project Ideas
	
	Hardware Requirements
	Resources
	
	Advisors

	2.2.​Real world HIL-SERL (SO-100/SO-101)
	Why Choose This Track?
	
	What You’ll Do
	
	Project Ideas
	
	Hardware Requirements
	
	Resources
	
	Advisors

	3.​Create and integrate a new/existing robot/teleoperator to LeRobot
	Why Choose This Track?
	
	What You’ll Do
	
	Project Ideas
	
	Hardware Requirements
	Resources
	
	Advisors

	4.​Hardware improvement
	Why Choose This Track?​
	
	What You’ll Do
	
	Project Ideas
	
	Hardware Requirements
	Resources
	Advisors

	5.​Datasets tools improvement
	Why Choose This Track?
	What You’ll Do
	
	Project Ideas
	
	Hardware Requirements
	
	Resources
	
	Advisors

