|
import json |
|
from typing import Any |
|
|
|
from env import TASK, MODELS, ORG_NAME |
|
|
|
import gradio as gr |
|
from datasets import Dataset, load_dataset |
|
|
|
|
|
KNOWN_METRIC_LABELS = { |
|
"accuracy": "Accuracy", |
|
"accuracy_stderr": "Accuracy (stderr)", |
|
} |
|
|
|
|
|
def aggregate_results() -> list: |
|
"""Extract scores for each model and return list of result dictionaries.""" |
|
all_results = [] |
|
for model_path in MODELS: |
|
try: |
|
path = f"{ORG_NAME}/details_{model_path.replace('/', '__')}_private" |
|
dataset = load_dataset(path, "results", split="latest") |
|
config = json.loads(dataset["config_general"][0]) |
|
results = json.loads(dataset["results"][0]) |
|
|
|
_, model = model_path.split("/") |
|
duration = round(config["end_time"] - config["start_time"], 2) |
|
|
|
result = { |
|
"Model": model, |
|
"Duration (s)": duration, |
|
} |
|
|
|
for metric, metric_values in results.items(): |
|
if metric == "all": |
|
continue |
|
|
|
for raw_metric_name, metric_value in metric_values.items(): |
|
base_name = raw_metric_name.split("(")[0].strip() |
|
pretty_label = KNOWN_METRIC_LABELS.get(base_name, raw_metric_name) |
|
|
|
if isinstance(metric_value, float): |
|
metric_value = round(metric_value, 3) |
|
|
|
result[pretty_label] = metric_value |
|
|
|
all_results.append(result) |
|
|
|
except Exception as e: |
|
print(f"Error processing {model_path} {ORG_NAME}: {e}") |
|
|
|
|
|
all_results.sort(key=lambda r: r.get("Accuracy", 0), reverse=True) |
|
|
|
return all_results |
|
|
|
|
|
def extract_dataviz() -> tuple[list[dict[str, Any]], list[dict[str, Any]], list[dict[str, Any]]]: |
|
"""Extract best, worst, and all samples for visualization""" |
|
sample_index_map = {} |
|
|
|
for model_path in MODELS: |
|
try: |
|
dataset_path = f"{ORG_NAME}/details_{model_path.replace('/', '__')}_private" |
|
split_name = f"custom_{TASK.replace('/', '_')}_0" |
|
dataset = load_dataset(dataset_path, split_name, split="latest") |
|
|
|
for idx, row in enumerate(dataset): |
|
prompt = row["full_prompt"] |
|
gold = row.get("gold", "") |
|
gold = gold[0] if isinstance(gold, list) and gold else gold |
|
score = list(row["metrics"].values())[0] |
|
predictions = row.get("predictions", []) |
|
prediction = predictions[0] if predictions else "" |
|
|
|
if idx not in sample_index_map: |
|
sample_index_map[idx] = { |
|
"ix": idx, |
|
"prompt": prompt, |
|
"gold": gold, |
|
"model_scores": [], |
|
"models": [], |
|
} |
|
|
|
if model_path not in sample_index_map[idx]["models"]: |
|
sample_index_map[idx][f"{model_path}_score"] = row["metrics"] |
|
sample_index_map[idx][f"{model_path}_prediction"] = prediction |
|
sample_index_map[idx]["model_scores"].append(score) |
|
sample_index_map[idx]["models"].append(model_path) |
|
|
|
except Exception as e: |
|
print(f"Error processing {model_path}: {e}") |
|
|
|
all_samples = sorted(sample_index_map.values(), key=lambda r: r["ix"]) |
|
|
|
hard_samples = [sample for sample in all_samples if sum(sample["model_scores"]) == 0] |
|
|
|
easy_samples = [sample for sample in all_samples if sum(sample["model_scores"]) == len(sample["model_scores"])] |
|
|
|
return easy_samples, hard_samples, all_samples |
|
|
|
|
|
def samples_to_box_display(samples: list[dict[str, Any]], example_index: int = 0) -> str: |
|
""" |
|
Adapted from Nathan's code https://huggingface.co/spaces/SaylorTwift/OpenEvalsModelDetails/ |
|
Support both light and dark themes |
|
""" |
|
if not samples: |
|
return "No samples in this category!" |
|
|
|
sample = samples[example_index] |
|
outputs = [] |
|
|
|
for model in sample["models"]: |
|
try: |
|
outputs.append({ |
|
"Model": model, |
|
"Prediction": sample[f"{model}_prediction"], |
|
"Prompt": sample["prompt"], |
|
"Metrics": sample[f"{model}_score"], |
|
"Gold": sample["gold"], |
|
}) |
|
except (KeyError, IndexError): |
|
continue |
|
|
|
if not outputs: |
|
return "No results found for the selected combination." |
|
|
|
|
|
css = """ |
|
<style> |
|
:root { |
|
--primary-bg: #f5f5f5; |
|
--secondary-bg: #ffffff; |
|
--gold-bg: #e6f3e6; |
|
--text-color: #333333; |
|
--border-color: #ddd; |
|
} |
|
|
|
@media (prefers-color-scheme: dark) { |
|
:root { |
|
--primary-bg: #2a2a2a; |
|
--secondary-bg: #333333; |
|
--gold-bg: #2a3a2a; |
|
--text-color: #e0e0e0; |
|
--border-color: #555; |
|
} |
|
} |
|
|
|
.box-container { |
|
max-width: 800px; |
|
margin: 0 auto; |
|
color: var(--text-color); |
|
} |
|
|
|
.gold-box { |
|
background: var(--gold-bg); |
|
padding: 20px; |
|
border-radius: 10px; |
|
margin-bottom: 20px; |
|
} |
|
|
|
.model-box { |
|
background: var(--primary-bg); |
|
padding: 20px; |
|
margin-bottom: 20px; |
|
border-radius: 10px; |
|
} |
|
|
|
.content-section { |
|
background: var(--secondary-bg); |
|
padding: 15px; |
|
border-radius: 5px; |
|
margin-top: 10px; |
|
} |
|
|
|
.metric-row { |
|
padding: 5px; |
|
border-bottom: 1px solid var(--border-color); |
|
} |
|
|
|
h2, h3 { |
|
color: var(--text-color); |
|
} |
|
|
|
pre, code { |
|
white-space: pre-wrap; |
|
word-wrap: break-word; |
|
margin: 0; |
|
color: var(--text-color); |
|
} |
|
</style> |
|
""" |
|
|
|
|
|
html_output = f"{css}<div class='box-container'>\n\n" |
|
|
|
|
|
if outputs: |
|
html_output += "<div class='gold-box'>\n" |
|
html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n" |
|
html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n" |
|
html_output += f"<pre><code>{outputs[0]['Gold']}</code></pre>\n" |
|
html_output += "</div>\n" |
|
html_output += "</div>\n" |
|
|
|
for output in outputs: |
|
html_output += "<div class='model-box'>\n" |
|
html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n" |
|
|
|
|
|
html_output += "<details open style='margin-bottom: 15px;'>\n" |
|
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n" |
|
metrics = output["Metrics"] |
|
if isinstance(metrics, str): |
|
metrics = eval(metrics) |
|
html_output += "<div style='overflow-x: auto;'>\n" |
|
html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n" |
|
for key, value in metrics.items(): |
|
if isinstance(value, float): |
|
value = f"{value:.3f}" |
|
html_output += f"<tr class='metric-row'><td><strong>{key}</strong></td><td>{value}</td></tr>\n" |
|
html_output += "</table>\n" |
|
html_output += "</div>\n" |
|
html_output += "</details>\n\n" |
|
|
|
|
|
html_output += "<details style='margin-bottom: 15px;'>\n" |
|
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n" |
|
html_output += "<div class='content-section'>\n" |
|
|
|
prompt_text = output["Prompt"] |
|
if isinstance(prompt_text, list): |
|
for i, msg in enumerate(prompt_text): |
|
if isinstance(msg, dict) and "content" in msg: |
|
role = msg.get("role", "message").title() |
|
html_output += "<div style='margin-bottom: 10px;'>\n" |
|
html_output += f"<strong>{role}:</strong>\n" |
|
html_output += "<div style='overflow-x: auto;'>\n" |
|
html_output += f"<pre><code>{msg['content']}</code></pre>\n" |
|
html_output += "</div>\n" |
|
html_output += "</div>\n" |
|
else: |
|
html_output += "<div style='margin-bottom: 10px;'>\n" |
|
html_output += "<div style='overflow-x: auto;'>\n" |
|
html_output += f"<pre><code>{json.dumps(msg, indent=2)}</code></pre>\n" |
|
html_output += "</div>\n" |
|
html_output += "</div>\n" |
|
else: |
|
html_output += "<div style='overflow-x: auto;'>\n" |
|
if isinstance(prompt_text, dict) and "content" in prompt_text: |
|
html_output += f"<pre><code>{prompt_text['content']}</code></pre>\n" |
|
else: |
|
html_output += f"<pre><code>{prompt_text}</code></pre>\n" |
|
html_output += "</div>\n" |
|
|
|
html_output += "</div>\n" |
|
html_output += "</details>\n\n" |
|
|
|
|
|
html_output += "<details open style='margin-bottom: 15px;'>\n" |
|
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>" |
|
|
|
word_count = len(output["Prediction"].split()) |
|
html_output += f"<span style='color: inherit; opacity: 0.7; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>" |
|
html_output += "</summary>\n" |
|
html_output += "<div class='content-section'>\n" |
|
html_output += "<div style='overflow-x: auto;'>\n" |
|
html_output += f"<pre><code>{output['Prediction']}</code></pre>\n" |
|
html_output += "</div>\n" |
|
html_output += "</div>\n" |
|
html_output += "</details>\n" |
|
html_output += "</div>\n\n" |
|
|
|
html_output += "</div>" |
|
return html_output |
|
|
|
|
|
def run_pipeline(samples_ix: int = 0) -> tuple[Any, Any, Any, Any]: |
|
"""Run evaluation pipeline and return results for display""" |
|
results = aggregate_results() |
|
easy_samples, hard_samples, all_samples = extract_dataviz() |
|
|
|
return ( |
|
gr.Dataframe(Dataset.from_list(results).to_pandas(), visible=True), |
|
gr.HTML( |
|
samples_to_box_display(easy_samples, samples_ix), |
|
label="Easiest samples (always found)", |
|
visible=True, |
|
), |
|
gr.HTML( |
|
samples_to_box_display(hard_samples, samples_ix), |
|
label="Hardest samples (always failed)", |
|
visible=True, |
|
), |
|
gr.HTML( |
|
samples_to_box_display(all_samples, samples_ix), |
|
label="All samples", |
|
visible=True, |
|
), |
|
) |
|
|
|
|
|
def update_examples(samples_ix: int = 0) -> tuple[str, str, str]: |
|
"""Return HTML strings for easy, hard, and all samples""" |
|
easy_samples, hard_samples, all_samples = extract_dataviz() |
|
|
|
return ( |
|
samples_to_box_display(easy_samples, samples_ix), |
|
samples_to_box_display(hard_samples, samples_ix), |
|
samples_to_box_display(all_samples, samples_ix), |
|
) |
|
|