Laurie's picture
Upload folder using huggingface_hub
4e6a3fe verified
import json
from typing import Any
from env import TASK, MODELS, ORG_NAME
import gradio as gr
from datasets import Dataset, load_dataset
KNOWN_METRIC_LABELS = {
"accuracy": "Accuracy",
"accuracy_stderr": "Accuracy (stderr)",
}
def aggregate_results() -> list:
"""Extract scores for each model and return list of result dictionaries."""
all_results = []
for model_path in MODELS:
try:
path = f"{ORG_NAME}/details_{model_path.replace('/', '__')}_private"
dataset = load_dataset(path, "results", split="latest")
config = json.loads(dataset["config_general"][0])
results = json.loads(dataset["results"][0])
_, model = model_path.split("/")
duration = round(config["end_time"] - config["start_time"], 2)
result = {
"Model": model,
"Duration (s)": duration,
}
for metric, metric_values in results.items():
if metric == "all":
continue
for raw_metric_name, metric_value in metric_values.items():
base_name = raw_metric_name.split("(")[0].strip()
pretty_label = KNOWN_METRIC_LABELS.get(base_name, raw_metric_name)
if isinstance(metric_value, float):
metric_value = round(metric_value, 3)
result[pretty_label] = metric_value
all_results.append(result)
except Exception as e:
print(f"Error processing {model_path} {ORG_NAME}: {e}")
# Sort final result by Accuracy
all_results.sort(key=lambda r: r.get("Accuracy", 0), reverse=True)
return all_results
def extract_dataviz() -> tuple[list[dict[str, Any]], list[dict[str, Any]], list[dict[str, Any]]]:
"""Extract best, worst, and all samples for visualization"""
sample_index_map = {}
for model_path in MODELS:
try:
dataset_path = f"{ORG_NAME}/details_{model_path.replace('/', '__')}_private"
split_name = f"custom_{TASK.replace('/', '_')}_0"
dataset = load_dataset(dataset_path, split_name, split="latest")
for idx, row in enumerate(dataset):
prompt = row["full_prompt"]
gold = row.get("gold", "")
gold = gold[0] if isinstance(gold, list) and gold else gold
score = list(row["metrics"].values())[0]
predictions = row.get("predictions", [])
prediction = predictions[0] if predictions else ""
if idx not in sample_index_map:
sample_index_map[idx] = {
"ix": idx,
"prompt": prompt,
"gold": gold,
"model_scores": [],
"models": [],
}
if model_path not in sample_index_map[idx]["models"]:
sample_index_map[idx][f"{model_path}_score"] = row["metrics"]
sample_index_map[idx][f"{model_path}_prediction"] = prediction
sample_index_map[idx]["model_scores"].append(score)
sample_index_map[idx]["models"].append(model_path)
except Exception as e:
print(f"Error processing {model_path}: {e}")
all_samples = sorted(sample_index_map.values(), key=lambda r: r["ix"])
hard_samples = [sample for sample in all_samples if sum(sample["model_scores"]) == 0]
easy_samples = [sample for sample in all_samples if sum(sample["model_scores"]) == len(sample["model_scores"])]
return easy_samples, hard_samples, all_samples
def samples_to_box_display(samples: list[dict[str, Any]], example_index: int = 0) -> str:
"""
Adapted from Nathan's code https://huggingface.co/spaces/SaylorTwift/OpenEvalsModelDetails/
Support both light and dark themes
"""
if not samples:
return "No samples in this category!"
sample = samples[example_index]
outputs = []
for model in sample["models"]:
try:
outputs.append({
"Model": model,
"Prediction": sample[f"{model}_prediction"],
"Prompt": sample["prompt"],
"Metrics": sample[f"{model}_score"],
"Gold": sample["gold"],
})
except (KeyError, IndexError):
continue
if not outputs:
return "No results found for the selected combination."
# CSS for theme compatibility
css = """
<style>
:root {
--primary-bg: #f5f5f5;
--secondary-bg: #ffffff;
--gold-bg: #e6f3e6;
--text-color: #333333;
--border-color: #ddd;
}
@media (prefers-color-scheme: dark) {
:root {
--primary-bg: #2a2a2a;
--secondary-bg: #333333;
--gold-bg: #2a3a2a;
--text-color: #e0e0e0;
--border-color: #555;
}
}
.box-container {
max-width: 800px;
margin: 0 auto;
color: var(--text-color);
}
.gold-box {
background: var(--gold-bg);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
}
.model-box {
background: var(--primary-bg);
padding: 20px;
margin-bottom: 20px;
border-radius: 10px;
}
.content-section {
background: var(--secondary-bg);
padding: 15px;
border-radius: 5px;
margin-top: 10px;
}
.metric-row {
padding: 5px;
border-bottom: 1px solid var(--border-color);
}
h2, h3 {
color: var(--text-color);
}
pre, code {
white-space: pre-wrap;
word-wrap: break-word;
margin: 0;
color: var(--text-color);
}
</style>
"""
# Create HTML output with all models
html_output = f"{css}<div class='box-container'>\n\n"
# Show gold answer at the top with distinct styling
if outputs:
html_output += "<div class='gold-box'>\n"
html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n"
html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n"
html_output += f"<pre><code>{outputs[0]['Gold']}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
for output in outputs:
html_output += "<div class='model-box'>\n"
html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n"
# Format metrics as a clean table
html_output += "<details open style='margin-bottom: 15px;'>\n"
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
metrics = output["Metrics"]
if isinstance(metrics, str):
metrics = eval(metrics)
html_output += "<div style='overflow-x: auto;'>\n"
html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n"
for key, value in metrics.items():
if isinstance(value, float):
value = f"{value:.3f}"
html_output += f"<tr class='metric-row'><td><strong>{key}</strong></td><td>{value}</td></tr>\n"
html_output += "</table>\n"
html_output += "</div>\n"
html_output += "</details>\n\n"
# Handle prompt formatting with better styling
html_output += "<details style='margin-bottom: 15px;'>\n"
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
html_output += "<div class='content-section'>\n"
prompt_text = output["Prompt"]
if isinstance(prompt_text, list):
for i, msg in enumerate(prompt_text):
if isinstance(msg, dict) and "content" in msg:
role = msg.get("role", "message").title()
html_output += "<div style='margin-bottom: 10px;'>\n"
html_output += f"<strong>{role}:</strong>\n"
html_output += "<div style='overflow-x: auto;'>\n"
html_output += f"<pre><code>{msg['content']}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
else:
html_output += "<div style='margin-bottom: 10px;'>\n"
html_output += "<div style='overflow-x: auto;'>\n"
html_output += f"<pre><code>{json.dumps(msg, indent=2)}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
else:
html_output += "<div style='overflow-x: auto;'>\n"
if isinstance(prompt_text, dict) and "content" in prompt_text:
html_output += f"<pre><code>{prompt_text['content']}</code></pre>\n"
else:
html_output += f"<pre><code>{prompt_text}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
html_output += "</details>\n\n"
# Style prediction output - now in a collapsible section
html_output += "<details open style='margin-bottom: 15px;'>\n"
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
# Add word count in a muted style
word_count = len(output["Prediction"].split())
html_output += f"<span style='color: inherit; opacity: 0.7; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
html_output += "</summary>\n"
html_output += "<div class='content-section'>\n"
html_output += "<div style='overflow-x: auto;'>\n"
html_output += f"<pre><code>{output['Prediction']}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
html_output += "</details>\n"
html_output += "</div>\n\n"
html_output += "</div>"
return html_output
def run_pipeline(samples_ix: int = 0) -> tuple[Any, Any, Any, Any]:
"""Run evaluation pipeline and return results for display"""
results = aggregate_results()
easy_samples, hard_samples, all_samples = extract_dataviz()
return (
gr.Dataframe(Dataset.from_list(results).to_pandas(), visible=True),
gr.HTML(
samples_to_box_display(easy_samples, samples_ix),
label="Easiest samples (always found)",
visible=True,
),
gr.HTML(
samples_to_box_display(hard_samples, samples_ix),
label="Hardest samples (always failed)",
visible=True,
),
gr.HTML(
samples_to_box_display(all_samples, samples_ix),
label="All samples",
visible=True,
),
)
def update_examples(samples_ix: int = 0) -> tuple[str, str, str]:
"""Return HTML strings for easy, hard, and all samples"""
easy_samples, hard_samples, all_samples = extract_dataviz()
return (
samples_to_box_display(easy_samples, samples_ix),
samples_to_box_display(hard_samples, samples_ix),
samples_to_box_display(all_samples, samples_ix),
)