import streamlit as st from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification import torch # Define the summarization pipeline summarizer_ntg = pipeline("text2text-generation", model="mrm8488/t5-base-finetuned-summarize-news") # Streamlit application title st.title("News Article Summarizer and Classifier") st.write("Enter a news article text to get its summary and category.") # Text input for user to enter the news article text text = st.text_area("Enter the news article text here:") # Perform summarization and classification when the user clicks the "Classify" button if st.button("Classify"): # Perform text summarization summary = summarizer_ntg(text)[0]['summary_text'] # Display the summary and classification result st.write("Summary:", summary)