Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import torch
|
|
4 |
|
5 |
# Define the summarization pipeline
|
6 |
summarizer_ntg = pipeline("text2text-generation", model="mrm8488/t5-base-finetuned-summarize-news")
|
7 |
-
|
8 |
|
9 |
# Streamlit application title
|
10 |
st.title("News Article Summarizer and Classifier")
|
@@ -17,16 +17,6 @@ text = st.text_area("Enter the news article text here:")
|
|
17 |
if st.button("Classify"):
|
18 |
# Perform text summarization
|
19 |
summary = summarizer_ntg(text)[0]['summary_text']
|
20 |
-
|
21 |
-
# Perform text classification
|
22 |
-
with torch.no_grad():
|
23 |
-
outputs = model_bb(**summary)
|
24 |
-
|
25 |
-
# Get the predicted label
|
26 |
-
predicted_label_id = torch.argmax(outputs.logits, dim=-1).item()
|
27 |
-
label_mapping = model_bb.config.id2label
|
28 |
-
predicted_label = label_mapping[predicted_label_id]
|
29 |
-
|
30 |
# Display the summary and classification result
|
31 |
st.write("Summary:", summary)
|
32 |
-
st.write("Category:", predicted_label)
|
|
|
4 |
|
5 |
# Define the summarization pipeline
|
6 |
summarizer_ntg = pipeline("text2text-generation", model="mrm8488/t5-base-finetuned-summarize-news")
|
7 |
+
|
8 |
|
9 |
# Streamlit application title
|
10 |
st.title("News Article Summarizer and Classifier")
|
|
|
17 |
if st.button("Classify"):
|
18 |
# Perform text summarization
|
19 |
summary = summarizer_ntg(text)[0]['summary_text']
|
20 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Display the summary and classification result
|
22 |
st.write("Summary:", summary)
|
|