Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelWithLMHead | |
import torch | |
# Load the tokenizer and model for classification | |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-summarize-news") | |
model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-summarize-news") | |
tokenizer_bb = AutoTokenizer.from_pretrained("Lauraayu/News_Classification_Model") | |
model_bb = AutoModelForSequenceClassification.from_pretrained("Lauraayu/News_Classification_Model") | |
# Streamlit application title | |
st.title("News Article Classifier") | |
st.write("Enter a news article text to get its category.") | |
# Text input for user to enter the news article text | |
article = st.text_area("News Article", height=300) | |
def summarize(text, max_length=150): | |
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) | |
generated_ids = model.generate(input_ids=input_ids, num_beams=2, max_length=max_length, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True) | |
preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] | |
return preds[0] | |
# Perform summarization and classification when the user clicks the "Classify" button | |
if st.button("Classify"): | |
# Perform text summarization | |
with st.spinner("Generating category..."): | |
summary = summarize(article) | |
# Tokenize the summarized text | |
inputs = tokenizer_bb(summary, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
# Perform text classification | |
with torch.no_grad(): | |
outputs = model_bb(**inputs) | |
# Get the predicted label | |
predicted_label_id = torch.argmax(outputs.logits, dim=-1).item() | |
label_mapping = model_bb.config.id2label | |
predicted_label = label_mapping[predicted_label_id] | |
# Display the classification result | |
st.write("Summary:", summary) | |
st.write("Category:", predicted_label) | |