Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelWithLMHead | |
| import torch | |
| # Load the tokenizer and model for classification | |
| tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-summarize-news") | |
| model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-summarize-news") | |
| tokenizer_bb = AutoTokenizer.from_pretrained("your-username/your-model-name") | |
| model_bb = AutoModelForSequenceClassification.from_pretrained("your-username/your-model-name") | |
| # Streamlit application title | |
| st.title("News Article Summarizer and Classifier") | |
| st.write("Enter a news article text to get its summary and category.") | |
| # Text input for user to enter the news article text | |
| article = st.text_area("News Article", height=300) | |
| def summarize(text, max_length=150): | |
| input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) | |
| generated_ids = model.generate(input_ids=input_ids, num_beams=2, max_length=max_length, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True) | |
| preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] | |
| return preds[0] | |
| # Perform summarization and classification when the user clicks the "Classify" button | |
| if st.button("Classify"): | |
| # Perform text summarization | |
| with st.spinner("Generating summary..."): | |
| summary = summarize(article) | |
| # Tokenize the summarized text | |
| inputs = tokenizer_bb(summary, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
| # Perform text classification | |
| with torch.no_grad(): | |
| outputs = model_bb(**inputs) | |
| # Get the predicted label | |
| predicted_label_id = torch.argmax(outputs.logits, dim=-1).item() | |
| label_mapping = model_bb.config.id2label | |
| predicted_label = label_mapping[predicted_label_id] | |
| # Display the summary and classification result | |
| st.write("Summary:", summary) | |
| st.write("Category:", predicted_label) | |