Agent Test
Browse files- Dockerfile +33 -0
- README.md +14 -0
- main.py +54 -0
- requirements.text +5 -0
Dockerfile
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
# Install system dependencies
|
6 |
+
RUN apt-get update && apt-get install -y \
|
7 |
+
build-essential \
|
8 |
+
curl \
|
9 |
+
git \
|
10 |
+
&& rm -rf /var/lib/apt/lists/*
|
11 |
+
|
12 |
+
# Set environment variables for FastAPI, transformers, etc.
|
13 |
+
ENV HOME=/app
|
14 |
+
ENV XDG_CONFIG_HOME=/app/.config
|
15 |
+
ENV XDG_CACHE_HOME=/app/.cache
|
16 |
+
|
17 |
+
# Create config/cache directories
|
18 |
+
RUN mkdir -p /app/.config /app/.cache
|
19 |
+
|
20 |
+
# Copy requirements first for caching and install dependencies
|
21 |
+
COPY requirements.txt ./
|
22 |
+
|
23 |
+
# Install Python dependencies, including watsonx orchestrate
|
24 |
+
RUN pip install --upgrade pip && \
|
25 |
+
pip install --upgrade ibm-watsonx-orchestrate && \
|
26 |
+
pip install -r requirements.txt
|
27 |
+
|
28 |
+
# Copy the rest of your app
|
29 |
+
COPY . .
|
30 |
+
|
31 |
+
EXPOSE 7860
|
32 |
+
|
33 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -10,3 +10,17 @@ short_description: AI powered Meeting Memory Workflow and Automation
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
13 |
+
|
14 |
+
/
|
15 |
+
βββ main.py # FastAPI application entry point
|
16 |
+
βββ requirements.txt # Python dependencies
|
17 |
+
βββ static/ # Static files (JS, CSS, images)
|
18 |
+
β βββ style.css
|
19 |
+
β βββ script.js
|
20 |
+
βββ templates/ # HTML templates for Jinja2 (for FastAPI responses)
|
21 |
+
β βββ index.html
|
22 |
+
βββ agents/ # (Optional) Python modules for each agent
|
23 |
+
β βββ transcription_agent.py
|
24 |
+
β βββ summarizer_agent.py
|
25 |
+
β βββ orchestrate_agent.py
|
26 |
+
βββ README.md
|
main.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
2 |
+
from fastapi.responses import HTMLResponse, JSONResponse
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, AutoTokenizer, AutoModelForCausalLM
|
6 |
+
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
# Load IBM Granite models once on startup
|
10 |
+
SPEECH_MODEL = "ibm-granite/granite-speech-3.3-8b"
|
11 |
+
LLM_MODEL = "ibm-granite/granite-3.3-8b-instruct"
|
12 |
+
|
13 |
+
speech_processor = AutoProcessor.from_pretrained(SPEECH_MODEL)
|
14 |
+
speech_model = AutoModelForSpeechSeq2Seq.from_pretrained(SPEECH_MODEL).to("cpu")
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
|
16 |
+
llm_model = AutoModelForCausalLM.from_pretrained(LLM_MODEL).to("cpu")
|
17 |
+
|
18 |
+
@app.get("/", response_class=HTMLResponse)
|
19 |
+
def home():
|
20 |
+
return """
|
21 |
+
<h1>Meeting Memory Workflow Automation</h1>
|
22 |
+
<form action="/transcribe" enctype="multipart/form-data" method="post">
|
23 |
+
<input type="file" name="audiofile" accept="audio/*" required/>
|
24 |
+
<button type="submit">Upload & Transcribe</button>
|
25 |
+
</form>
|
26 |
+
"""
|
27 |
+
|
28 |
+
@app.post("/transcribe")
|
29 |
+
async def transcribe(audiofile: UploadFile = File(...)):
|
30 |
+
audio_bytes = await audiofile.read()
|
31 |
+
import io
|
32 |
+
wav = io.BytesIO(audio_bytes)
|
33 |
+
audio, sample_rate = torchaudio.load(wav)
|
34 |
+
|
35 |
+
inputs = speech_processor(audio, sampling_rate=sample_rate, return_tensors="pt").to(speech_model.device)
|
36 |
+
generated_ids = speech_model.generate(**inputs)
|
37 |
+
transcript = speech_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
38 |
+
|
39 |
+
# Summarize
|
40 |
+
prompt = f"Summarize the following text: {transcript}"
|
41 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(llm_model.device)
|
42 |
+
summary_ids = llm_model.generate(**inputs, max_new_tokens=200)
|
43 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True).replace(prompt, "").strip()
|
44 |
+
|
45 |
+
html = f"""
|
46 |
+
<h2>Transcript</h2>
|
47 |
+
<pre>{transcript}</pre>
|
48 |
+
<h2>Summary</h2>
|
49 |
+
<pre>{summary}</pre>
|
50 |
+
<a href="/">Back</a>
|
51 |
+
"""
|
52 |
+
return HTMLResponse(content=html)
|
53 |
+
|
54 |
+
# Add any orchestration/agent endpoints as needed!
|
requirements.text
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
torchaudio
|