Spaces:
Runtime error
Runtime error
File size: 22,267 Bytes
eea83e8 d9616a5 eea83e8 3d2f97b eea83e8 fa3cf85 3d2f97b fa3cf85 3d2f97b fa3cf85 eea83e8 fa3cf85 eea83e8 fa3cf85 eea83e8 fa3cf85 eea83e8 fa3cf85 eea83e8 fa3cf85 eea83e8 fa3cf85 eea83e8 fa3cf85 eea83e8 fa3cf85 eea83e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import os
import spaces
import re
import random
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from threading import Thread
import subprocess
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit()
def download_tools_ckpts(target_dir, url):
from huggingface_hub import snapshot_download
import os
import shutil
tmp_dir = "hf_temp_download"
os.makedirs(tmp_dir, exist_ok=True)
snapshot_download(
repo_id="LYL1015/JarvisIR",
repo_type="model",
local_dir=tmp_dir,
allow_patterns=os.path.join(url, "**"),
local_dir_use_symlinks=False,
)
src_dir = os.path.join(tmp_dir, url)
shutil.copytree(src_dir, target_dir)
shutil.rmtree(tmp_dir)
target_dir = "JarvisIR/checkpoints/agent_tools"
if not os.path.exists(target_dir):
download_tools_ckpts(target_dir, "agent_tools/checkpoints")
llm_targer_dir = "JarvisIR/checkpoints/pretrained_preview"
if not os.path.exists(llm_targer_dir):
download_tools_ckpts(llm_targer_dir, "pretrained/preview")
# Model configuration
# XXX: Path to the fine-tuned LLaVA model
model_id = llm_targer_dir
# Available image restoration tasks and their corresponding models
all_tasks = " {denoise: [scunet, restormer], lighten: [retinexformer_fivek, hvicidnet, lightdiff], \
derain: [idt, turbo_rain, s2former], defog:[ridcp, kanet], \
desnow:[turbo_snow, snowmaster], super_resolution: [real_esrgan], \
}"
# Various prompt templates for querying the LLM about image degradation and restoration tasks
prompts_query2 = [
f"Considering the image's degradation, suggest the required tasks with explanations, and identify suitable tools for each task. Options for tasks and tools include: {all_tasks}.",
f"Given the image's degradation, outline the essential tasks along with justifications, and choose the appropriate tools for each task from the following options: {all_tasks}.",
f"Please specify the tasks required due to the image's degradation, explain the reasons, and select relevant tools for each task from the provided options: {all_tasks}.",
f"Based on the image degradation, determine the necessary tasks and their reasons, along with the appropriate tools for each task. Choose from these options: {all_tasks}.",
f"Identify the tasks required to address the image's degradation, including the reasons for each, and select tools from the options: {all_tasks}.",
f"Considering the degradation observed, list the tasks needed and their justifications, then pick the most suitable tools for each task from these options: {all_tasks}.",
f"Evaluate the image degradation, and based on that, provide the necessary tasks and reasons, along with tools chosen from the options: {all_tasks}.",
f"With respect to the image degradation, outline the tasks needed and explain why, selecting tools from the following list: {all_tasks}.",
f"Given the level of degradation in the image, specify tasks to address it, include reasons, and select tools for each task from: {all_tasks}.",
f"Examine the image's degradation, propose relevant tasks and their explanations, and identify tools from the options provided: {all_tasks}.",
f"Based on observed degradation, detail the tasks required, explain your choices, and select tools from these options: {all_tasks}.",
f"Using the image's degradation as a guide, list the necessary tasks, include explanations, and pick tools from the provided choices: {all_tasks}.",
f"Assess the image degradation, provide the essential tasks and reasons, and select the appropriate tools for each task from the options: {all_tasks}.",
f"According to the image's degradation, determine which tasks are necessary and why, choosing tools for each task from: {all_tasks}.",
f"Observe the degradation in the image, specify the needed tasks with justifications, and select appropriate tools from: {all_tasks}.",
f"Taking the image degradation into account, specify tasks needed, provide reasons, and choose tools from the following: {all_tasks}.",
f"Consider the image's degradation level, outline the tasks necessary, provide reasoning, and select suitable tools from: {all_tasks}.",
f"Evaluate the degradation in the image, identify tasks required, explain your choices, and pick tools from: {all_tasks}.",
f"Analyze the image degradation and suggest tasks with justifications, choosing the best tools from these options: {all_tasks}.",
f"Review the image degradation, and based on it, specify tasks needed, provide reasons, and select tools for each task from: {all_tasks}."
]
# Initialize models
print("Loading LLM model...")
# Initialize the image restoration toolkit
from agent_tools import RestorationToolkit
tool_engine = RestorationToolkit(score_weight=[0,0,0,0,0])
# Load the LLaVA model in half precision to reduce memory usage
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
low_cpu_mem_usage=True
)
processor = AutoProcessor.from_pretrained(model_id)
print("Loading tool engine...")
def parse_llm_response(response):
"""
Parse the LLM response to extract reason and answer sections
Args:
response (str): The raw response from the LLM
Returns:
tuple: (reason, answer) extracted from the response
"""
reason_match = re.search(r'<reason>(.*?)</reason>', response, re.DOTALL)
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL)
reason = reason_match.group(1).strip() if reason_match else "No reasoning provided"
answer = answer_match.group(1).strip() if answer_match else "No answer provided"
return reason, answer
def extract_models_from_answer(answer):
"""
Extract model names from the answer string using regex
Args:
answer (str): The answer string containing model recommendations
Returns:
list: List of extracted model names
"""
# Pattern to match [type:xxx]:(model:xxx)
pattern = r'\[type:[^\]]+\]:\(model:([^)]+)\)'
models = re.findall(pattern, answer)
return models
def beautify_recommended_actions(answer, models):
"""
Format the LLM's recommendations in a more visually appealing way
Args:
answer (str): The raw answer from LLM
models (list): List of extracted model names
Returns:
str: Beautified display of recommendations
"""
# Task type to emoji mapping for visual enhancement
task_icons = {
'denoise': '🧹',
'lighten': '💡',
'derain': '🌧️',
'defog': '🌫️',
'desnow': '❄️',
'super_resolution': '🔍'
}
# Parse the answer to extract tasks and models
pattern = r'\[type:([^\]]+)\]:\(model:([^)]+)\)'
matches = re.findall(pattern, answer)
if not matches:
return f"**🎯 Recommended Actions:**\n\n{answer}\n\n**Extracted Models:** {', '.join(models) if models else 'None'}"
# Create beautified display
beautified = "**🎯 Recommended Actions:**\n"
beautified += "> "
# Create horizontal flow of actions
action_parts = []
for task_type, model_name in matches:
task_type = task_type.strip()
model_name = model_name.strip()
# Get icon for task type
icon = task_icons.get(task_type, '🔧')
# Format task name (capitalize and replace underscores)
task_display = task_type.title().replace('_', ' ')
# Create action part: icon + task + model
action_part = f"{icon} {task_display}:`{model_name}`"
action_parts.append(action_part)
# Join with arrows to show sequence
beautified += " ➡ ".join(action_parts) + "\n\n"
# Add summary information
beautified += f"**📋 Processing Pipeline:** {len(matches)} steps\n"
beautified += f"**🛠️ Models to use:** {' → '.join(models)}"
return beautified
def resize_image_to_original(processed_image_path, original_size):
"""
Resize processed image back to original dimensions
Args:
processed_image_path (str): Path to the processed image
original_size (tuple): Original image dimensions (width, height)
Returns:
str: Path to the resized image
"""
if processed_image_path and os.path.exists(processed_image_path):
img = Image.open(processed_image_path)
img_resized = img.resize(original_size, Image.Resampling.LANCZOS)
# Save resized image
output_path = os.path.join('temp_outputs', 'final_result.png')
img_resized.save(output_path)
return output_path
return processed_image_path
def get_llm_response_streaming(image_path):
"""
Get streaming response from LLM for image analysis
Args:
image_path (str): Path to the input image
Returns:
TextIteratorStreamer: A streamer object to yield tokens
"""
# Select random prompt from the templates
instruction = prompts_query2[random.randint(0, len(prompts_query2)-1)]
# Format the prompt with image for multimodal input
prompt = (f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{instruction}<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n")
# Load and process image
raw_image = Image.open(image_path)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
# Setup streaming for token-by-token generation
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
# Generate response in a separate thread to avoid blocking
generation_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=400,
do_sample=False
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
return streamer
def process_image_with_tools(image_path, models, original_size):
"""
Process image using the tool engine and restore to original size
Args:
image_path (str): Path to the input image
models (list): List of models to apply
original_size (tuple): Original image dimensions
Returns:
str: Path to the final processed image
"""
if not models:
return None
# Create output directory
os.makedirs('temp_outputs', exist_ok=True)
# Process the image with selected models
res = tool_engine.process_image(models, image_path, 'temp_outputs')
# Resize back to original dimensions
final_result = resize_image_to_original(res['output_path'], original_size)
return final_result
@spaces.GPU(duration=150)
def process_full_pipeline(image):
"""
Main processing pipeline with streaming UI updates
Args:
image (str): Path to the input image
Yields:
tuple: (chat_history, processed_image) for Gradio UI updates
"""
if image is None:
return [], None
try:
# Get original image size for later restoration
original_img = Image.open(image)
original_size = original_img.size
# Initialize chat history for UI
chat_history = [("Image uploaded for analysis", None)]
# Step 1: Get streaming LLM response
streamer = get_llm_response_streaming(image)
# Stream the response to UI with real-time updates
full_response = ""
in_reason = False
in_answer = False
reason_displayed = False
answer_displayed = False
reasoning_added = False # Track if reasoning entry was added
for new_text in streamer:
full_response += new_text
# Check if we're entering reason section or if we need to start showing content
if ('<reason>' in full_response and not in_reason and not reason_displayed) or (not reasoning_added and not in_reason and not reason_displayed):
in_reason = True
reasoning_added = True
if '<reason>' in full_response:
# Extract content after <reason>
reason_start = full_response.find('<reason>') + len('<reason>')
reason_content = full_response[reason_start:].strip()
else:
# Show all content as reasoning if no tag yet
reason_content = full_response.strip()
# Add reasoning to chat history
chat_history.append((None, f"**🤔 Analysis & Reasoning:**\n\n{reason_content}"))
yield chat_history, None
# If we're in reason section, update content
elif in_reason and not reason_displayed:
# Check if reason section is complete
if '</reason>' in full_response:
# Extract complete reason content
reason_start = full_response.find('<reason>') + len('<reason>')
reason_end = full_response.find('</reason>')
reason_content = full_response[reason_start:reason_end].strip()
# Update chat history with complete reason
chat_history[1] = (None, f"**🤔 Analysis & Reasoning:**\n\n{reason_content}")
reason_displayed = True
in_reason = False
yield chat_history, None
else:
# Continue streaming reason content
if '<reason>' in full_response:
reason_start = full_response.find('<reason>') + len('<reason>')
reason_content = full_response[reason_start:].strip()
else:
reason_content = full_response.strip()
# Update chat history with partial reason
chat_history[1] = (None, f"**🤔 Analysis & Reasoning:**\n\n{reason_content}")
yield chat_history, None
# Check if we're entering answer section
elif '<answer>' in full_response and not in_answer and not answer_displayed and reason_displayed:
in_answer = True
# Extract content after <answer>
answer_start = full_response.find('<answer>') + len('<answer>')
answer_content = full_response[answer_start:]
# Add partial answer to chat history
models = extract_models_from_answer(answer_content)
beautified = beautify_recommended_actions(answer_content, models)
chat_history.append((None, beautified))
yield chat_history, None
# If we're in answer section, update content
elif in_answer and not answer_displayed:
# Check if answer section is complete
if '</answer>' in full_response:
# Extract complete answer content
answer_start = full_response.find('<answer>') + len('<answer>')
answer_end = full_response.find('</answer>')
answer_content = full_response[answer_start:answer_end].strip()
# Parse and process final answer
models = extract_models_from_answer(answer_content)
beautified = beautify_recommended_actions(answer_content, models)
chat_history[2] = (None, beautified)
answer_displayed = True
in_answer = False
yield chat_history, None
# Process image with tools
if models:
chat_history.append((None, "**🔄 Processing image...**"))
yield chat_history, None
processed_image = process_image_with_tools(image, models, original_size)
chat_history[-1] = (None, "**✅ Processing Complete!**")
yield chat_history, processed_image
return
else:
chat_history.append((None, "**❌ No valid models found in the response**"))
yield chat_history, None
return
else:
# Continue streaming answer content
answer_start = full_response.find('<answer>') + len('<answer>')
answer_content = full_response[answer_start:].strip()
# Update chat history with partial answer
models = extract_models_from_answer(answer_content)
beautified = beautify_recommended_actions(answer_content, models)
chat_history[2] = (None, beautified)
yield chat_history, None
# Fallback if streaming completes without proper tags
if not answer_displayed:
reason, answer = parse_llm_response(full_response)
models = extract_models_from_answer(answer)
chat_history = [
("Image uploaded for analysis", None),
(None, f"**🤔 Analysis & Reasoning:**\n\n{reason}"),
(None, beautify_recommended_actions(answer, models))
]
if models:
chat_history.append((None, "**🔄 Processing image...**"))
yield chat_history, None
processed_image = process_image_with_tools(image, models, original_size)
chat_history[-1] = (None, "**✅ Processing Complete!**")
yield chat_history, processed_image
else:
chat_history.append((None, "**❌ No valid models found in the response**"))
yield chat_history, None
except Exception as e:
error_msg = f"Error: {str(e)}"
chat_history = [
("Image uploaded for analysis", None),
(None, f"**❌ Error occurred:**\n\n{error_msg}")
]
yield chat_history, None
# Create Gradio interface
def create_interface():
"""
Create and configure the Gradio web interface
Returns:
gr.Blocks: Configured Gradio interface
"""
with gr.Blocks(title="JarvisIR: Elevating Autonomous Driving Perception with Intelligent Image Restoration", theme=gr.themes.Soft()) as demo:
# Header with logo and title
gr.Markdown("""
# <img src="https://cvpr2025-jarvisir.github.io/imgs/icon.png" width="32" height="32" style="display: inline-block; vertical-align: middle; transform: translateY(-2px); margin-right: 1px;"/> JarvisIR: Elevating Autonomous Driving Perception with Intelligent Image Restoration
Upload an image and let JarvisIR analyze its degradation and recommend the best restoration tools!
""")
with gr.Row():
with gr.Column(scale=1):
# Input image upload component
input_image = gr.Image(
type="filepath",
label="📸 Upload Your Image",
height=400
)
# Process button
process_btn = gr.Button(
"🚀 Analyze & Process",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
# Chat interface to show analysis
chatbot = gr.Chatbot(
label="💬 AI Analysis Chat",
height=400,
show_label=True,
bubble_full_width=False
)
with gr.Row():
# Output image display
output_image = gr.Image(
label="✨ Processed Result",
height=300
)
# Connect event handler for the process button
process_btn.click(
fn=process_full_pipeline,
inputs=[input_image],
outputs=[chatbot, output_image]
)
# Instructions section
gr.Markdown("### 📝 Instructions:")
gr.Markdown("""
1. **Upload an image** that needs restoration (blurry, dark, noisy, etc.)
2. **Click 'Analyze & Process'** to let AI analyze the image
3. **View the chat** to see AI's reasoning and recommendations in real-time
4. **Check the result** - processed image restored to original dimensions
""")
return demo
if __name__ == "__main__":
print("Starting Image Restoration Assistant...")
demo = create_interface()
# Launch the Gradio app on specified host and port
demo.launch(
server_name="0.0.0.0",
server_port=7866,
share=False
) |