|
import gradio as gr |
|
import os |
|
import torch |
|
import numpy as np |
|
import cv2 |
|
import huggingface_hub |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
from sam2.build_sam import build_sam2 |
|
from sam2.sam2_image_predictor import SAM2ImagePredictor |
|
|
|
|
|
|
|
torch.autocast(device_type="cpu", dtype=torch.float32).__enter__() |
|
|
|
def preprocess_image(image): |
|
return image, gr.State([]), gr.State([]), image |
|
|
|
def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData): |
|
print(f"You selected {evt.value} at {evt.index} from {evt.target}") |
|
tracking_points.value.append(evt.index) |
|
print(f"TRACKING POINT: {tracking_points.value}") |
|
if point_type == "include": |
|
trackings_input_label.value.append(1) |
|
elif point_type == "exclude": |
|
trackings_input_label.value.append(0) |
|
print(f"TRACKING INPUT LABEL: {trackings_input_label.value}") |
|
transparent_background = Image.open(first_frame_path).convert('RGBA') |
|
w, h = transparent_background.size |
|
fraction = 0.02 |
|
radius = int(fraction * min(w, h)) |
|
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8) |
|
for index, track in enumerate(tracking_points.value): |
|
if trackings_input_label.value[index] == 1: |
|
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1) |
|
else: |
|
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1) |
|
transparent_layer = Image.fromarray(transparent_layer, 'RGBA') |
|
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer) |
|
return tracking_points, trackings_input_label, selected_point_map |
|
|
|
def show_mask(mask, ax, random_color=False, borders=True): |
|
if random_color: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
else: |
|
color = np.array([30/255, 144/255, 255/255, 0.6]) |
|
h, w = mask.shape[-2:] |
|
mask = mask.astype(np.uint8) |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
if borders: |
|
contours, _= cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) |
|
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours] |
|
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2) |
|
ax.imshow(mask_image) |
|
|
|
def show_points(coords, labels, ax, marker_size=200): |
|
pos_points = coords[labels==1] |
|
neg_points = coords[labels==0] |
|
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) |
|
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) |
|
|
|
def show_box(box, ax): |
|
x0, y0 = box[0], box[1] |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) |
|
|
|
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True): |
|
combined_images = [] |
|
mask_images = [] |
|
for i, (mask, score) in enumerate(zip(masks, scores)): |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image) |
|
show_mask(mask, plt.gca(), borders=borders) |
|
plt.axis('off') |
|
combined_filename = f"combined_image_{i+1}.jpg" |
|
plt.savefig(combined_filename, format='jpg', bbox_inches='tight') |
|
combined_images.append(combined_filename) |
|
plt.close() |
|
mask_image = np.zeros_like(image, dtype=np.uint8) |
|
mask_layer = (mask > 0).astype(np.uint8) * 255 |
|
for c in range(3): |
|
mask_image[:, :, c] = mask_layer |
|
mask_filename = f"mask_image_{i+1}.png" |
|
Image.fromarray(mask_image).save(mask_filename) |
|
mask_images.append(mask_filename) |
|
return combined_images, mask_images |
|
|
|
def expand_contract_mask(mask, px, expand=True): |
|
kernel = np.ones((px, px), np.uint8) |
|
if expand: |
|
return cv2.dilate(mask, kernel, iterations=1) |
|
else: |
|
return cv2.erode(mask, kernel, iterations=1) |
|
|
|
def feather_mask(mask, feather_size=10): |
|
feathered_mask = mask.copy() |
|
Feathered_region = mask > 0 |
|
Feathered_region = cv2.dilate(Feathered_region.astype(np.uint8), np.ones((feather_size, feather_size), np.uint8), iterations=1) |
|
Feathered_region = Feathered_region & (~mask.astype(bool)) |
|
|
|
for i in range(1, feather_size + 1): |
|
weight = i / (feather_size + 1) |
|
feathered_mask[Feathered_region] = feathered_mask[Feathered_region] * (1 - weight) + weight |
|
|
|
return feathered_mask |
|
|
|
def process_mask(mask, expand_contract_px, expand, feathering_enabled, feather_size): |
|
if expand_contract_px > 0: |
|
mask = expand_contract_mask(mask, expand_contract_px, expand) |
|
if feathering_enabled: |
|
mask = feather_mask(mask, feather_size) |
|
return mask |
|
|
|
def sam_process(input_image, checkpoint, tracking_points, trackings_input_label, expand_contract_px, expand, feathering_enabled, feather_size): |
|
image = Image.open(input_image) |
|
image = np.array(image.convert("RGB")) |
|
sam21_hfmap = { |
|
"tiny": "facebook/sam2.1-hiera-tiny", |
|
"small": "facebook/sam2.1-hiera-small", |
|
"base-plus": "facebook/sam2.1-hiera-base-plus", |
|
"large": "facebook/sam2.1-hiera-large", |
|
} |
|
|
|
|
|
|
|
predictor = SAM2ImagePredictor.from_pretrained(sam21_hfmap[checkpoint], device="cpu") |
|
|
|
|
|
predictor.set_image(image) |
|
input_point = np.array(tracking_points.value) |
|
input_label = np.array(trackings_input_label.value) |
|
masks, scores, logits = predictor.predict( |
|
point_coords=input_point, |
|
point_labels=input_label, |
|
multimask_output=False, |
|
) |
|
sorted_ind = np.argsort(scores)[::-1] |
|
masks = masks[sorted_ind] |
|
scores = scores[sorted_ind] |
|
processed_masks = [] |
|
for mask in masks: |
|
processed_mask = process_mask(mask, expand_contract_px, expand, feathering_enabled, feather_size) |
|
processed_masks.append(processed_mask) |
|
results, mask_results = show_masks(image, processed_masks, scores, |
|
point_coords=input_point, |
|
input_labels=input_label, |
|
borders=True) |
|
return results[0], mask_results[0] |
|
|
|
with gr.Blocks() as demo: |
|
first_frame_path = gr.State() |
|
tracking_points = gr.State([]) |
|
trackings_input_label = gr.State([]) |
|
with gr.Column(): |
|
gr.Markdown("# Point-Seg Masking by SAM2.1 Image Predictor (CPU Optimized)") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False) |
|
points_map = gr.Image(label="points map", type="filepath", interactive=True) |
|
with gr.Row(): |
|
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include") |
|
clear_points_btn = gr.Button("Clear Points") |
|
checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="base-plus") |
|
with gr.Row(): |
|
expand_contract_px = gr.Slider(minimum=0, maximum=50, value=0, step=1, label="Expand / Contract Amount (px)") |
|
expand = gr.Radio(["Expand", "Contract"], value="Expand", label="Refine Mask") |
|
with gr.Row(): |
|
feathering_enabled = gr.Checkbox(value=False, label="Enable Feathering") |
|
feather_size = gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Feathering Size", visible=False) |
|
submit_btn = gr.Button("Submit") |
|
with gr.Column(): |
|
output_result = gr.Image() |
|
output_result_mask = gr.Image() |
|
clear_points_btn.click( |
|
fn=preprocess_image, |
|
inputs=input_image, |
|
outputs=[first_frame_path, tracking_points, trackings_input_label, points_map], |
|
queue=False |
|
) |
|
points_map.upload( |
|
fn=preprocess_image, |
|
inputs=[points_map], |
|
outputs=[first_frame_path, tracking_points, trackings_input_label, input_image], |
|
queue=False |
|
) |
|
points_map.select( |
|
fn=get_point, |
|
inputs=[point_type, tracking_points, trackings_input_label, first_frame_path], |
|
outputs=[tracking_points, trackings_input_label, points_map], |
|
queue=False |
|
) |
|
submit_btn.click( |
|
fn=sam_process, |
|
inputs=[input_image, checkpoint, tracking_points, trackings_input_label, expand_contract_px, expand, feathering_enabled, feather_size], |
|
outputs=[output_result, output_result_mask] |
|
) |
|
feathering_enabled.change( |
|
fn=lambda enabled: gr.update(visible=enabled), |
|
inputs=[feathering_enabled], |
|
outputs=[feather_size] |
|
) |
|
|
|
demo.launch(show_error=True) |