Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,57 +18,47 @@ MODELS = {
|
|
| 18 |
"SatPony-Lightning": "John6666/satpony-lightning-v2-sdxl"
|
| 19 |
}
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
vae =
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
pipe
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def update_pipeline(model_selection):
|
| 57 |
-
global pipe, loaded_model_name
|
| 58 |
-
if model_selection != loaded_model_name:
|
| 59 |
-
print(f"Loading new model: {model_selection}")
|
| 60 |
-
pipe = init_pipeline(model_selection)
|
| 61 |
-
loaded_model_name = model_selection
|
| 62 |
-
return pipe
|
| 63 |
-
|
| 64 |
@spaces.GPU(duration=12)
|
| 65 |
def fill_image(prompt, image, model_selection, paste_back):
|
| 66 |
-
global pipe
|
| 67 |
-
update_pipeline(model_selection)
|
| 68 |
print(f"Received image: {image}")
|
| 69 |
if image is None:
|
| 70 |
yield None, None
|
| 71 |
return
|
|
|
|
| 72 |
(
|
| 73 |
prompt_embeds,
|
| 74 |
negative_prompt_embeds,
|
|
@@ -81,6 +71,7 @@ def fill_image(prompt, image, model_selection, paste_back):
|
|
| 81 |
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
|
| 82 |
cnet_image = source.copy()
|
| 83 |
cnet_image.paste(0, (0, 0), binary_mask)
|
|
|
|
| 84 |
for image in pipe(
|
| 85 |
prompt_embeds=prompt_embeds,
|
| 86 |
negative_prompt_embeds=negative_prompt_embeds,
|
|
@@ -89,6 +80,7 @@ def fill_image(prompt, image, model_selection, paste_back):
|
|
| 89 |
image=cnet_image,
|
| 90 |
):
|
| 91 |
yield image, cnet_image
|
|
|
|
| 92 |
print(f"{model_selection=}")
|
| 93 |
print(f"{paste_back=}")
|
| 94 |
if paste_back:
|
|
@@ -197,9 +189,15 @@ def preview_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
| 197 |
return preview
|
| 198 |
|
| 199 |
@spaces.GPU(duration=12)
|
| 200 |
-
def inpaint(prompt, image,
|
| 201 |
global pipe
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
mask = Image.fromarray(image["mask"]).convert("L")
|
| 204 |
image = Image.fromarray(image["image"])
|
| 205 |
inpaint_final_prompt = f"score_9, score_8_up, score_7_up, {prompt}"
|
|
@@ -207,7 +205,7 @@ def inpaint(prompt, image, model_selection, paste_back):
|
|
| 207 |
if paste_back:
|
| 208 |
result.paste(image, (0, 0), Image.fromarray(255 - np.array(mask)))
|
| 209 |
return result
|
| 210 |
-
|
| 211 |
@spaces.GPU(duration=12)
|
| 212 |
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 213 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
|
@@ -237,8 +235,6 @@ def outpaint(image, width, height, overlap_percentage, num_inference_steps, resi
|
|
| 237 |
|
| 238 |
@spaces.GPU(duration=12)
|
| 239 |
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 240 |
-
global pipe
|
| 241 |
-
update_pipeline(model_selection) # Ensure model_selection is defined
|
| 242 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 243 |
if not can_expand(background.width, background.height, width, height, alignment):
|
| 244 |
alignment = "Middle"
|
|
@@ -263,7 +259,7 @@ def infer(image, width, height, overlap_percentage, num_inference_steps, resize_
|
|
| 263 |
image = image.convert("RGBA")
|
| 264 |
cnet_image.paste(image, (0, 0), mask)
|
| 265 |
yield background, cnet_image
|
| 266 |
-
|
| 267 |
def use_output_as_input(output_image):
|
| 268 |
return gr.update(value=output_image[1])
|
| 269 |
|
|
@@ -311,16 +307,13 @@ def update_history(new_image, history):
|
|
| 311 |
return history
|
| 312 |
|
| 313 |
css = """
|
| 314 |
-
.
|
| 315 |
width: 86vw !important;
|
| 316 |
}
|
| 317 |
-
.
|
| 318 |
overflow-y: scroll !important;
|
| 319 |
padding: 10px 40px !important;
|
| 320 |
}
|
| 321 |
-
div#component-8 {
|
| 322 |
-
min-height: fit-content !important;
|
| 323 |
-
}
|
| 324 |
div#component-17 {
|
| 325 |
height: auto !important;
|
| 326 |
}
|
|
@@ -338,41 +331,35 @@ title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
|
| 338 |
"""
|
| 339 |
|
| 340 |
with gr.Blocks(css=css, fill_height=True) as demo:
|
| 341 |
-
gr.Markdown("#
|
| 342 |
with gr.Tabs():
|
| 343 |
with gr.TabItem("Inpaint"):
|
| 344 |
with gr.Column():
|
| 345 |
with gr.Row():
|
| 346 |
-
with gr.Column():
|
| 347 |
-
input_image = gr.ImageMask(
|
| 348 |
-
type="pil", label="Input Image", layers=True
|
| 349 |
-
)
|
| 350 |
-
|
| 351 |
with gr.Column():
|
| 352 |
prompt = gr.Textbox(
|
| 353 |
label="Prompt",
|
| 354 |
info="Describe what to inpaint the mask with",
|
| 355 |
lines=3,
|
| 356 |
)
|
|
|
|
| 357 |
model_selection = gr.Dropdown(
|
| 358 |
choices=list(MODELS.keys()),
|
| 359 |
-
value=
|
| 360 |
label="Model",
|
| 361 |
)
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
| 375 |
-
|
| 376 |
use_as_input_button.click(
|
| 377 |
fn=use_output_as_input, inputs=[result], outputs=[input_image]
|
| 378 |
)
|
|
@@ -384,24 +371,10 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
| 384 |
fn=lambda: gr.update(visible=False),
|
| 385 |
inputs=None,
|
| 386 |
outputs=use_as_input_button,
|
| 387 |
-
).then(
|
| 388 |
-
fn=lambda: gr.update(value="Loading Model...", visible=True), # Show loading message
|
| 389 |
-
inputs=None,
|
| 390 |
-
outputs=loading_message
|
| 391 |
).then(
|
| 392 |
fn=fill_image,
|
| 393 |
inputs=[prompt, input_image, model_selection, paste_back],
|
| 394 |
outputs=[result],
|
| 395 |
-
).then(
|
| 396 |
-
fn=lambda: gr.update(value="Model Loaded", visible=True), # Show loaded message
|
| 397 |
-
inputs=None,
|
| 398 |
-
outputs=loading_message,
|
| 399 |
-
queue=False
|
| 400 |
-
).then(
|
| 401 |
-
fn=lambda: gr.update(value="", visible=False), # Hide loading message
|
| 402 |
-
inputs=None,
|
| 403 |
-
outputs=loading_message,
|
| 404 |
-
queue=False
|
| 405 |
).then(
|
| 406 |
fn=lambda: gr.update(visible=True),
|
| 407 |
inputs=None,
|
|
@@ -415,24 +388,10 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
| 415 |
fn=lambda: gr.update(visible=False),
|
| 416 |
inputs=None,
|
| 417 |
outputs=use_as_input_button,
|
| 418 |
-
).then(
|
| 419 |
-
fn=lambda: gr.update(value="Loading Model...", visible=True), # Show loading message
|
| 420 |
-
inputs=None,
|
| 421 |
-
outputs=loading_message
|
| 422 |
).then(
|
| 423 |
fn=fill_image,
|
| 424 |
inputs=[prompt, input_image, model_selection, paste_back],
|
| 425 |
outputs=[result],
|
| 426 |
-
).then(
|
| 427 |
-
fn=lambda: gr.update(value="Model Loaded", visible=True), # Show loaded message
|
| 428 |
-
inputs=None,
|
| 429 |
-
outputs=loading_message,
|
| 430 |
-
queue=False
|
| 431 |
-
).then(
|
| 432 |
-
fn=lambda: gr.update(value="", visible=False), # Hide loading message
|
| 433 |
-
inputs=None,
|
| 434 |
-
outputs=loading_message,
|
| 435 |
-
queue=False
|
| 436 |
).then(
|
| 437 |
fn=lambda: gr.update(visible=True),
|
| 438 |
inputs=None,
|
|
@@ -485,7 +444,7 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
| 485 |
overlap_percentage = gr.Slider(
|
| 486 |
label="Mask overlap (%)",
|
| 487 |
minimum=1,
|
| 488 |
-
maximum=
|
| 489 |
value=10,
|
| 490 |
step=1
|
| 491 |
)
|
|
@@ -525,13 +484,9 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
| 525 |
interactive=False,
|
| 526 |
label="Generated Image",
|
| 527 |
)
|
| 528 |
-
loading_message_outpaint = gr.Label(label="Status", value="", visible=False) # Added loading message label
|
| 529 |
use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
preview_image = gr.Image(label="Preview")
|
| 533 |
-
|
| 534 |
-
|
| 535 |
|
| 536 |
target_ratio.change(
|
| 537 |
fn=preload_presets,
|
|
@@ -566,76 +521,43 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
| 566 |
inputs=[result_outpaint],
|
| 567 |
outputs=[input_image_outpaint]
|
| 568 |
)
|
| 569 |
-
|
| 570 |
runout_button.click(
|
| 571 |
fn=clear_result,
|
| 572 |
inputs=None,
|
| 573 |
outputs=result_outpaint,
|
| 574 |
-
).then(
|
| 575 |
-
fn=lambda: gr.update(value="Loading Model...", visible=True), # Show loading message
|
| 576 |
-
inputs=None,
|
| 577 |
-
outputs=loading_message_outpaint
|
| 578 |
).then(
|
| 579 |
fn=infer,
|
| 580 |
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 581 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 582 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 583 |
outputs=[result_outpaint],
|
| 584 |
-
).then(
|
| 585 |
-
fn=lambda: gr.update(value="Model Loaded", visible=True), # Show loaded message
|
| 586 |
-
inputs=None,
|
| 587 |
-
outputs=loading_message_outpaint,
|
| 588 |
-
queue=False
|
| 589 |
).then(
|
| 590 |
fn=lambda x, history: update_history(x[1], history),
|
| 591 |
inputs=[result_outpaint, history_gallery],
|
| 592 |
outputs=history_gallery,
|
| 593 |
-
).then(
|
| 594 |
-
fn=lambda: gr.update(value="", visible=False), # Hide loading message
|
| 595 |
-
inputs=None,
|
| 596 |
-
outputs=loading_message_outpaint,
|
| 597 |
-
queue=False
|
| 598 |
).then(
|
| 599 |
fn=lambda: gr.update(visible=True),
|
| 600 |
inputs=None,
|
| 601 |
-
outputs=use_as_input_button_outpaint,
|
| 602 |
)
|
| 603 |
prompt_input.submit(
|
| 604 |
fn=clear_result,
|
| 605 |
inputs=None,
|
| 606 |
outputs=result_outpaint,
|
| 607 |
-
).then(
|
| 608 |
-
fn=lambda: gr.update(visible=False),
|
| 609 |
-
inputs=None,
|
| 610 |
-
outputs=use_as_input_button_outpaint,
|
| 611 |
-
).then(
|
| 612 |
-
fn=lambda: gr.update(value="Loading Model...", visible=True), # Show loading message
|
| 613 |
-
inputs=None,
|
| 614 |
-
outputs=loading_message_outpaint
|
| 615 |
).then(
|
| 616 |
fn=infer,
|
| 617 |
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 618 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 619 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 620 |
outputs=[result_outpaint],
|
| 621 |
-
).then(
|
| 622 |
-
fn=lambda: gr.update(value="Model Loaded", visible=True), # Show loaded message
|
| 623 |
-
inputs=None,
|
| 624 |
-
outputs=loading_message_outpaint,
|
| 625 |
-
queue=False
|
| 626 |
).then(
|
| 627 |
fn=lambda x, history: update_history(x[1], history),
|
| 628 |
inputs=[result_outpaint, history_gallery],
|
| 629 |
outputs=history_gallery,
|
| 630 |
-
).then(
|
| 631 |
-
fn=lambda: gr.update(value="", visible=False), # Hide loading message
|
| 632 |
-
inputs=None,
|
| 633 |
-
outputs=loading_message_outpaint,
|
| 634 |
-
queue=False
|
| 635 |
).then(
|
| 636 |
fn=lambda: gr.update(visible=True),
|
| 637 |
inputs=None,
|
| 638 |
-
outputs=use_as_input_button_outpaint,
|
| 639 |
)
|
| 640 |
preview_button.click(
|
| 641 |
fn=preview_image_and_mask,
|
|
@@ -644,4 +566,5 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
| 644 |
outputs=[preview_image],
|
| 645 |
queue=False
|
| 646 |
)
|
|
|
|
| 647 |
demo.launch(show_error=True)
|
|
|
|
| 18 |
"SatPony-Lightning": "John6666/satpony-lightning-v2-sdxl"
|
| 19 |
}
|
| 20 |
|
| 21 |
+
config_file = hf_hub_download(
|
| 22 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
| 23 |
+
filename="config_promax.json",
|
| 24 |
+
)
|
| 25 |
+
config = ControlNetModel_Union.load_config(config_file)
|
| 26 |
+
controlnet_model = ControlNetModel_Union.from_config(config)
|
| 27 |
+
model_file = hf_hub_download(
|
| 28 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
| 29 |
+
filename="diffusion_pytorch_model_promax.safetensors",
|
| 30 |
+
)
|
| 31 |
+
state_dict = load_state_dict(model_file)
|
| 32 |
+
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
| 33 |
+
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
| 34 |
+
)
|
| 35 |
+
model.to(device="cuda", dtype=torch.float16)
|
| 36 |
+
vae = AutoencoderKL.from_pretrained(
|
| 37 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
| 38 |
+
).to("cuda")
|
| 39 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 40 |
+
"SG161222/RealVisXL_V5.0_Lightning",
|
| 41 |
+
torch_dtype=torch.float16,
|
| 42 |
+
vae=vae,
|
| 43 |
+
controlnet=model,
|
| 44 |
+
variant="fp16",
|
| 45 |
+
)
|
| 46 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 47 |
+
"GraydientPlatformAPI/lustify-lightning",
|
| 48 |
+
torch_dtype=torch.float16,
|
| 49 |
+
vae=vae,
|
| 50 |
+
controlnet=model,
|
| 51 |
+
)
|
| 52 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 53 |
+
pipe.to("cuda")
|
| 54 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
@spaces.GPU(duration=12)
|
| 56 |
def fill_image(prompt, image, model_selection, paste_back):
|
|
|
|
|
|
|
| 57 |
print(f"Received image: {image}")
|
| 58 |
if image is None:
|
| 59 |
yield None, None
|
| 60 |
return
|
| 61 |
+
|
| 62 |
(
|
| 63 |
prompt_embeds,
|
| 64 |
negative_prompt_embeds,
|
|
|
|
| 71 |
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
|
| 72 |
cnet_image = source.copy()
|
| 73 |
cnet_image.paste(0, (0, 0), binary_mask)
|
| 74 |
+
|
| 75 |
for image in pipe(
|
| 76 |
prompt_embeds=prompt_embeds,
|
| 77 |
negative_prompt_embeds=negative_prompt_embeds,
|
|
|
|
| 80 |
image=cnet_image,
|
| 81 |
):
|
| 82 |
yield image, cnet_image
|
| 83 |
+
|
| 84 |
print(f"{model_selection=}")
|
| 85 |
print(f"{paste_back=}")
|
| 86 |
if paste_back:
|
|
|
|
| 189 |
return preview
|
| 190 |
|
| 191 |
@spaces.GPU(duration=12)
|
| 192 |
+
def inpaint(prompt, image, inpaint_model, paste_back):
|
| 193 |
global pipe
|
| 194 |
+
if pipe.config.model_name != MODELS[model_name]:
|
| 195 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 196 |
+
MODELS[model_name],
|
| 197 |
+
torch_dtype=torch.float16,
|
| 198 |
+
vae=vae,
|
| 199 |
+
controlnet=model,
|
| 200 |
+
).to("cuda")
|
| 201 |
mask = Image.fromarray(image["mask"]).convert("L")
|
| 202 |
image = Image.fromarray(image["image"])
|
| 203 |
inpaint_final_prompt = f"score_9, score_8_up, score_7_up, {prompt}"
|
|
|
|
| 205 |
if paste_back:
|
| 206 |
result.paste(image, (0, 0), Image.fromarray(255 - np.array(mask)))
|
| 207 |
return result
|
| 208 |
+
|
| 209 |
@spaces.GPU(duration=12)
|
| 210 |
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 211 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
|
|
|
| 235 |
|
| 236 |
@spaces.GPU(duration=12)
|
| 237 |
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
|
|
|
|
|
|
| 238 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 239 |
if not can_expand(background.width, background.height, width, height, alignment):
|
| 240 |
alignment = "Middle"
|
|
|
|
| 259 |
image = image.convert("RGBA")
|
| 260 |
cnet_image.paste(image, (0, 0), mask)
|
| 261 |
yield background, cnet_image
|
| 262 |
+
|
| 263 |
def use_output_as_input(output_image):
|
| 264 |
return gr.update(value=output_image[1])
|
| 265 |
|
|
|
|
| 307 |
return history
|
| 308 |
|
| 309 |
css = """
|
| 310 |
+
.nulgradio-container {
|
| 311 |
width: 86vw !important;
|
| 312 |
}
|
| 313 |
+
.nulcontain {
|
| 314 |
overflow-y: scroll !important;
|
| 315 |
padding: 10px 40px !important;
|
| 316 |
}
|
|
|
|
|
|
|
|
|
|
| 317 |
div#component-17 {
|
| 318 |
height: auto !important;
|
| 319 |
}
|
|
|
|
| 331 |
"""
|
| 332 |
|
| 333 |
with gr.Blocks(css=css, fill_height=True) as demo:
|
| 334 |
+
gr.Markdown("# Diffusers Inpaint and Outpaint")
|
| 335 |
with gr.Tabs():
|
| 336 |
with gr.TabItem("Inpaint"):
|
| 337 |
with gr.Column():
|
| 338 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
with gr.Column():
|
| 340 |
prompt = gr.Textbox(
|
| 341 |
label="Prompt",
|
| 342 |
info="Describe what to inpaint the mask with",
|
| 343 |
lines=3,
|
| 344 |
)
|
| 345 |
+
with gr.Column():
|
| 346 |
model_selection = gr.Dropdown(
|
| 347 |
choices=list(MODELS.keys()),
|
| 348 |
+
value="RealVisXL V5.0 Lightning",
|
| 349 |
label="Model",
|
| 350 |
)
|
| 351 |
+
with gr.Row():
|
| 352 |
+
run_button = gr.Button("Generate")
|
| 353 |
+
paste_back = gr.Checkbox(True, label="Paste back original")
|
| 354 |
+
with gr.Row(equal_height=False):
|
| 355 |
+
input_image = gr.ImageMask(
|
| 356 |
+
type="pil", label="Input Image", layers=True
|
| 357 |
+
)
|
| 358 |
+
result = ImageSlider(
|
| 359 |
+
interactive=False,
|
| 360 |
+
label="Generated Image",
|
| 361 |
+
)
|
|
|
|
| 362 |
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
|
|
|
| 363 |
use_as_input_button.click(
|
| 364 |
fn=use_output_as_input, inputs=[result], outputs=[input_image]
|
| 365 |
)
|
|
|
|
| 371 |
fn=lambda: gr.update(visible=False),
|
| 372 |
inputs=None,
|
| 373 |
outputs=use_as_input_button,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
).then(
|
| 375 |
fn=fill_image,
|
| 376 |
inputs=[prompt, input_image, model_selection, paste_back],
|
| 377 |
outputs=[result],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
).then(
|
| 379 |
fn=lambda: gr.update(visible=True),
|
| 380 |
inputs=None,
|
|
|
|
| 388 |
fn=lambda: gr.update(visible=False),
|
| 389 |
inputs=None,
|
| 390 |
outputs=use_as_input_button,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
).then(
|
| 392 |
fn=fill_image,
|
| 393 |
inputs=[prompt, input_image, model_selection, paste_back],
|
| 394 |
outputs=[result],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
).then(
|
| 396 |
fn=lambda: gr.update(visible=True),
|
| 397 |
inputs=None,
|
|
|
|
| 444 |
overlap_percentage = gr.Slider(
|
| 445 |
label="Mask overlap (%)",
|
| 446 |
minimum=1,
|
| 447 |
+
maximum=50,
|
| 448 |
value=10,
|
| 449 |
step=1
|
| 450 |
)
|
|
|
|
| 484 |
interactive=False,
|
| 485 |
label="Generated Image",
|
| 486 |
)
|
|
|
|
| 487 |
use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
|
| 488 |
+
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
| 489 |
+
preview_image = gr.Image(label="Preview")
|
|
|
|
|
|
|
|
|
|
| 490 |
|
| 491 |
target_ratio.change(
|
| 492 |
fn=preload_presets,
|
|
|
|
| 521 |
inputs=[result_outpaint],
|
| 522 |
outputs=[input_image_outpaint]
|
| 523 |
)
|
|
|
|
| 524 |
runout_button.click(
|
| 525 |
fn=clear_result,
|
| 526 |
inputs=None,
|
| 527 |
outputs=result_outpaint,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
).then(
|
| 529 |
fn=infer,
|
| 530 |
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 531 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 532 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 533 |
outputs=[result_outpaint],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 534 |
).then(
|
| 535 |
fn=lambda x, history: update_history(x[1], history),
|
| 536 |
inputs=[result_outpaint, history_gallery],
|
| 537 |
outputs=history_gallery,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 538 |
).then(
|
| 539 |
fn=lambda: gr.update(visible=True),
|
| 540 |
inputs=None,
|
| 541 |
+
outputs=[use_as_input_button_outpaint],
|
| 542 |
)
|
| 543 |
prompt_input.submit(
|
| 544 |
fn=clear_result,
|
| 545 |
inputs=None,
|
| 546 |
outputs=result_outpaint,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 547 |
).then(
|
| 548 |
fn=infer,
|
| 549 |
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 550 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 551 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 552 |
outputs=[result_outpaint],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 553 |
).then(
|
| 554 |
fn=lambda x, history: update_history(x[1], history),
|
| 555 |
inputs=[result_outpaint, history_gallery],
|
| 556 |
outputs=history_gallery,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
).then(
|
| 558 |
fn=lambda: gr.update(visible=True),
|
| 559 |
inputs=None,
|
| 560 |
+
outputs=[use_as_input_button_outpaint],
|
| 561 |
)
|
| 562 |
preview_button.click(
|
| 563 |
fn=preview_image_and_mask,
|
|
|
|
| 566 |
outputs=[preview_image],
|
| 567 |
queue=False
|
| 568 |
)
|
| 569 |
+
|
| 570 |
demo.launch(show_error=True)
|