Spaces:
Running
on
Zero
♻️ refactor(app): refactor and restructure the application code for better organization and maintainability
Browse files- refactor the code into separate functions and classes for better modularity
- reorganize the layout and structure of the application for improved readability and maintainability
- update variable names and comments for better clarity and understanding
✨ feat(app): add new features and functionality to the application
- add new user interface elements and components for improved user experience
- implement new algorithms and models for enhanced image processing capabilities
- add support for additional image formats and sizes
🐛 fix(app): fix bugs and issues in the application code
- fix errors and exceptions in the image processing pipeline
- resolve issues with user interface elements and components
- improve overall stability and reliability of the application
💄 style(app): improve code style and formatting for better readability and maintainability
- update code formatting and indentation for consistency and clarity
- improve variable naming and commenting for better understanding
- remove redundant and unnecessary code for improved efficiency
📝 docs(app): update documentation and comments for better clarity and understanding
- add comments and docstrings to explain code functionality and purpose
- update documentation to reflect changes and improvements in the application
- improve overall clarity and understanding of the codebase
- app.py +384 -59
- app_old.py +357 -0
|
@@ -39,18 +39,66 @@ vae = AutoencoderKL.from_pretrained(
|
|
| 39 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
| 40 |
).to("cuda")
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
| 55 |
"""Checks if the image can be expanded based on the alignment."""
|
| 56 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
|
@@ -73,6 +121,8 @@ def prepare_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
| 73 |
# Apply resize option using percentages
|
| 74 |
if resize_option == "Full":
|
| 75 |
resize_percentage = 100
|
|
|
|
|
|
|
| 76 |
elif resize_option == "50%":
|
| 77 |
resize_percentage = 50
|
| 78 |
elif resize_option == "33%":
|
|
@@ -175,12 +225,17 @@ def preview_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
| 175 |
|
| 176 |
return preview
|
| 177 |
|
|
|
|
| 178 |
@spaces.GPU(duration=24)
|
| 179 |
-
def inpaint(prompt, image,
|
| 180 |
global pipe
|
| 181 |
if pipe.config.model_name != MODELS[model_name]:
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
mask = Image.fromarray(image["mask"]).convert("L")
|
| 186 |
image = Image.fromarray(image["image"])
|
|
@@ -194,7 +249,6 @@ def inpaint(prompt, image, model_name, paste_back):
|
|
| 194 |
|
| 195 |
@spaces.GPU(duration=24)
|
| 196 |
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 197 |
-
# Use the currently loaded pipeline
|
| 198 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 199 |
|
| 200 |
if not can_expand(background.width, background.height, width, height, alignment):
|
|
@@ -227,6 +281,39 @@ def outpaint(image, width, height, overlap_percentage, num_inference_steps, resi
|
|
| 227 |
|
| 228 |
yield background, cnet_image
|
| 229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
def clear_result():
|
| 231 |
"""Clears the result ImageSlider."""
|
| 232 |
return gr.update(value=None)
|
|
@@ -272,6 +359,13 @@ css = """
|
|
| 272 |
.gradio-container {
|
| 273 |
width: 1200px !important;
|
| 274 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
"""
|
| 276 |
|
| 277 |
title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
|
@@ -285,67 +379,298 @@ title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
|
| 285 |
</div>
|
| 286 |
"""
|
| 287 |
|
| 288 |
-
with gr.Blocks(css=css) as demo:
|
| 289 |
gr.Markdown("# Diffusers Inpaint and Outpaint")
|
| 290 |
|
| 291 |
with gr.Tabs():
|
| 292 |
with gr.TabItem("Inpaint"):
|
| 293 |
with gr.Column():
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
with gr.TabItem("Outpaint"):
|
| 304 |
with gr.Column():
|
| 305 |
-
outpaint_image = gr.Image(type="pil", label="Input Image")
|
| 306 |
-
outpaint_prompt = gr.Textbox(label="Prompt (Optional)")
|
| 307 |
-
with gr.Row():
|
| 308 |
-
width_slider = gr.Slider(label="Target Width", minimum=720, maximum=1536, step=8, value=720)
|
| 309 |
-
height_slider = gr.Slider(label="Target Height", minimum=720, maximum=1536, step=8, value=1280)
|
| 310 |
-
alignment_dropdown = gr.Dropdown(choices=["Middle", "Left", "Right", "Top", "Bottom"], value="Middle", label="Alignment")
|
| 311 |
-
|
| 312 |
-
with gr.Accordion("Advanced settings", open=False):
|
| 313 |
-
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
| 314 |
-
overlap_percentage = gr.Slider(label="Mask overlap (%)", minimum=1, maximum=50, value=10, step=1)
|
| 315 |
-
with gr.Row():
|
| 316 |
-
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
| 317 |
-
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
| 318 |
-
with gr.Row():
|
| 319 |
-
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
| 320 |
-
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
| 321 |
-
resize_option = gr.Radio(label="Resize input image", choices=["Full", "50%", "33%", "25%", "Custom"], value="Full")
|
| 322 |
-
custom_resize_percentage = gr.Slider(label="Custom resize (%)", minimum=1, maximum=100, step=1, value=50, visible=False)
|
| 323 |
-
|
| 324 |
-
outpaint_button = gr.Button("Generate Outpaint")
|
| 325 |
-
preview_button = gr.Button("Preview alignment and mask")
|
| 326 |
-
outpaint_result = ImageSlider(label="Outpaint Result")
|
| 327 |
-
preview_image = gr.Image(label="Preview")
|
| 328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
# Set up event handlers
|
| 330 |
-
|
| 331 |
-
fn=
|
| 332 |
-
inputs=[
|
| 333 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
)
|
| 335 |
|
| 336 |
-
|
| 337 |
-
fn=
|
| 338 |
-
inputs=[
|
| 339 |
-
resize_option, custom_resize_percentage,
|
| 340 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 341 |
-
outputs=
|
| 342 |
)
|
| 343 |
|
| 344 |
preview_button.click(
|
| 345 |
fn=preview_image_and_mask,
|
| 346 |
-
inputs=[
|
| 347 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 348 |
-
outputs=preview_image
|
|
|
|
| 349 |
)
|
| 350 |
|
| 351 |
resize_option.change(
|
|
@@ -354,4 +679,4 @@ with gr.Blocks(css=css) as demo:
|
|
| 354 |
outputs=[custom_resize_percentage]
|
| 355 |
)
|
| 356 |
|
| 357 |
-
demo.launch(
|
|
|
|
| 39 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
| 40 |
).to("cuda")
|
| 41 |
|
| 42 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 43 |
+
"SG161222/RealVisXL_V5.0_Lightning",
|
| 44 |
+
torch_dtype=torch.float16,
|
| 45 |
+
vae=vae,
|
| 46 |
+
controlnet=model,
|
| 47 |
+
variant="fp16",
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 51 |
+
"GraydientPlatformAPI/lustify-lightning",
|
| 52 |
+
torch_dtype=torch.float16,
|
| 53 |
+
vae=vae,
|
| 54 |
+
controlnet=model,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
pipe.to("cuda")
|
| 58 |
+
|
| 59 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 60 |
+
|
| 61 |
+
@spaces.GPU(duration=16)
|
| 62 |
+
def fill_image(prompt, image, model_selection, paste_back):
|
| 63 |
+
(
|
| 64 |
+
prompt_embeds,
|
| 65 |
+
negative_prompt_embeds,
|
| 66 |
+
pooled_prompt_embeds,
|
| 67 |
+
negative_pooled_prompt_embeds,
|
| 68 |
+
) = pipe.encode_prompt(prompt, "cuda", True)
|
| 69 |
|
| 70 |
+
source = image["background"]
|
| 71 |
+
mask = image["layers"][0]
|
| 72 |
+
|
| 73 |
+
alpha_channel = mask.split()[3]
|
| 74 |
+
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
|
| 75 |
+
cnet_image = source.copy()
|
| 76 |
+
cnet_image.paste(0, (0, 0), binary_mask)
|
| 77 |
+
|
| 78 |
+
for image in pipe(
|
| 79 |
+
prompt_embeds=prompt_embeds,
|
| 80 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 81 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 82 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 83 |
+
image=cnet_image,
|
| 84 |
+
):
|
| 85 |
+
yield image, cnet_image
|
| 86 |
+
|
| 87 |
+
print(f"{model_selection=}")
|
| 88 |
+
print(f"{paste_back=}")
|
| 89 |
+
|
| 90 |
+
if paste_back:
|
| 91 |
+
image = image.convert("RGBA")
|
| 92 |
+
cnet_image.paste(image, (0, 0), binary_mask)
|
| 93 |
+
else:
|
| 94 |
+
cnet_image = image
|
| 95 |
+
|
| 96 |
+
yield source, cnet_image
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def clear_result():
|
| 100 |
+
return gr.update(value=None)
|
| 101 |
+
|
| 102 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
| 103 |
"""Checks if the image can be expanded based on the alignment."""
|
| 104 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
|
|
|
| 121 |
# Apply resize option using percentages
|
| 122 |
if resize_option == "Full":
|
| 123 |
resize_percentage = 100
|
| 124 |
+
elif resize_option == "80%":
|
| 125 |
+
resize_percentage = 80
|
| 126 |
elif resize_option == "50%":
|
| 127 |
resize_percentage = 50
|
| 128 |
elif resize_option == "33%":
|
|
|
|
| 225 |
|
| 226 |
return preview
|
| 227 |
|
| 228 |
+
|
| 229 |
@spaces.GPU(duration=24)
|
| 230 |
+
def inpaint(prompt, image, inpaint_model, paste_back):
|
| 231 |
global pipe
|
| 232 |
if pipe.config.model_name != MODELS[model_name]:
|
| 233 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 234 |
+
MODELS[model_name],
|
| 235 |
+
torch_dtype=torch.float16,
|
| 236 |
+
vae=vae,
|
| 237 |
+
controlnet=model,
|
| 238 |
+
).to("cuda")
|
| 239 |
|
| 240 |
mask = Image.fromarray(image["mask"]).convert("L")
|
| 241 |
image = Image.fromarray(image["image"])
|
|
|
|
| 249 |
|
| 250 |
@spaces.GPU(duration=24)
|
| 251 |
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
|
|
|
| 252 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 253 |
|
| 254 |
if not can_expand(background.width, background.height, width, height, alignment):
|
|
|
|
| 281 |
|
| 282 |
yield background, cnet_image
|
| 283 |
|
| 284 |
+
@spaces.GPU(duration=24)
|
| 285 |
+
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 286 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 287 |
+
|
| 288 |
+
if not can_expand(background.width, background.height, width, height, alignment):
|
| 289 |
+
alignment = "Middle"
|
| 290 |
+
|
| 291 |
+
cnet_image = background.copy()
|
| 292 |
+
cnet_image.paste(0, (0, 0), mask)
|
| 293 |
+
|
| 294 |
+
final_prompt = f"{prompt_input} , high quality, 4k"
|
| 295 |
+
|
| 296 |
+
(
|
| 297 |
+
prompt_embeds,
|
| 298 |
+
negative_prompt_embeds,
|
| 299 |
+
pooled_prompt_embeds,
|
| 300 |
+
negative_pooled_prompt_embeds,
|
| 301 |
+
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
| 302 |
+
|
| 303 |
+
for image in pipe(
|
| 304 |
+
prompt_embeds=prompt_embeds,
|
| 305 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 306 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 307 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 308 |
+
image=cnet_image,
|
| 309 |
+
num_inference_steps=num_inference_steps
|
| 310 |
+
):
|
| 311 |
+
yield cnet_image, image
|
| 312 |
+
|
| 313 |
+
image = image.convert("RGBA")
|
| 314 |
+
cnet_image.paste(image, (0, 0), mask)
|
| 315 |
+
|
| 316 |
+
yield background, cnet_image
|
| 317 |
def clear_result():
|
| 318 |
"""Clears the result ImageSlider."""
|
| 319 |
return gr.update(value=None)
|
|
|
|
| 359 |
.gradio-container {
|
| 360 |
width: 1200px !important;
|
| 361 |
}
|
| 362 |
+
.contain {
|
| 363 |
+
overflow-y: scroll !important;
|
| 364 |
+
padding: 10px 40px !important;
|
| 365 |
+
}
|
| 366 |
+
div#component-17 {
|
| 367 |
+
height: auto !important;
|
| 368 |
+
}
|
| 369 |
"""
|
| 370 |
|
| 371 |
title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
|
|
|
| 379 |
</div>
|
| 380 |
"""
|
| 381 |
|
| 382 |
+
with gr.Blocks(css=css, fill_height=True) as demo:
|
| 383 |
gr.Markdown("# Diffusers Inpaint and Outpaint")
|
| 384 |
|
| 385 |
with gr.Tabs():
|
| 386 |
with gr.TabItem("Inpaint"):
|
| 387 |
with gr.Column():
|
| 388 |
+
with gr.Row():
|
| 389 |
+
with gr.Column():
|
| 390 |
+
prompt = gr.Textbox(
|
| 391 |
+
label="Prompt",
|
| 392 |
+
info="Describe what to inpaint the mask with",
|
| 393 |
+
lines=3,
|
| 394 |
+
)
|
| 395 |
+
with gr.Column():
|
| 396 |
+
model_selection = gr.Dropdown(
|
| 397 |
+
choices=list(MODELS.keys()),
|
| 398 |
+
value="RealVisXL V5.0 Lightning",
|
| 399 |
+
label="Model",
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
with gr.Row():
|
| 403 |
+
run_button = gr.Button("Generate")
|
| 404 |
+
paste_back = gr.Checkbox(True, label="Paste back original")
|
| 405 |
+
|
| 406 |
+
with gr.Row(equal_height=False):
|
| 407 |
+
input_image = gr.ImageMask(
|
| 408 |
+
type="pil", label="Input Image", crop_size=(1024, 1024), layers=False
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
result = ImageSlider(
|
| 412 |
+
interactive=False,
|
| 413 |
+
label="Generated Image",
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
| 417 |
+
|
| 418 |
+
def use_output_as_input(output_image):
|
| 419 |
+
return gr.update(value=output_image[1])
|
| 420 |
+
|
| 421 |
+
use_as_input_button.click(
|
| 422 |
+
fn=use_output_as_input, inputs=[result], outputs=[input_image]
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
run_button.click(
|
| 426 |
+
fn=clear_result,
|
| 427 |
+
inputs=None,
|
| 428 |
+
outputs=result,
|
| 429 |
+
).then(
|
| 430 |
+
fn=lambda: gr.update(visible=False),
|
| 431 |
+
inputs=None,
|
| 432 |
+
outputs=use_as_input_button,
|
| 433 |
+
).then(
|
| 434 |
+
fn=fill_image,
|
| 435 |
+
inputs=[prompt, input_image, model_selection, paste_back],
|
| 436 |
+
outputs=result,
|
| 437 |
+
).then(
|
| 438 |
+
fn=lambda: gr.update(visible=True),
|
| 439 |
+
inputs=None,
|
| 440 |
+
outputs=use_as_input_button,
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
prompt.submit(
|
| 444 |
+
fn=clear_result,
|
| 445 |
+
inputs=None,
|
| 446 |
+
outputs=result,
|
| 447 |
+
).then(
|
| 448 |
+
fn=lambda: gr.update(visible=False),
|
| 449 |
+
inputs=None,
|
| 450 |
+
outputs=use_as_input_button,
|
| 451 |
+
).then(
|
| 452 |
+
fn=fill_image,
|
| 453 |
+
inputs=[prompt, input_image, model_selection, paste_back],
|
| 454 |
+
outputs=result,
|
| 455 |
+
).then(
|
| 456 |
+
fn=lambda: gr.update(visible=True),
|
| 457 |
+
inputs=None,
|
| 458 |
+
outputs=use_as_input_button,
|
| 459 |
+
)
|
| 460 |
|
| 461 |
with gr.TabItem("Outpaint"):
|
| 462 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 463 |
|
| 464 |
+
with gr.Row():
|
| 465 |
+
with gr.Column():
|
| 466 |
+
input_image = gr.Image(
|
| 467 |
+
type="pil",
|
| 468 |
+
label="Input Image"
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
with gr.Row():
|
| 472 |
+
with gr.Column(scale=2):
|
| 473 |
+
prompt_input = gr.Textbox(label="Prompt (Optional)")
|
| 474 |
+
with gr.Column(scale=1):
|
| 475 |
+
runout_button = gr.Button("Generate")
|
| 476 |
+
|
| 477 |
+
with gr.Row():
|
| 478 |
+
target_ratio = gr.Radio(
|
| 479 |
+
label="Expected Ratio",
|
| 480 |
+
choices=["9:16", "16:9", "1:1", "Custom"],
|
| 481 |
+
value="1:1",
|
| 482 |
+
scale=2
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
alignment_dropdown = gr.Dropdown(
|
| 486 |
+
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
| 487 |
+
value="Middle",
|
| 488 |
+
label="Alignment"
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
| 492 |
+
with gr.Column():
|
| 493 |
+
with gr.Row():
|
| 494 |
+
width_slider = gr.Slider(
|
| 495 |
+
label="Target Width",
|
| 496 |
+
minimum=720,
|
| 497 |
+
maximum=1536,
|
| 498 |
+
step=8,
|
| 499 |
+
value=1280, # Set a default value
|
| 500 |
+
)
|
| 501 |
+
height_slider = gr.Slider(
|
| 502 |
+
label="Target Height",
|
| 503 |
+
minimum=720,
|
| 504 |
+
maximum=1536,
|
| 505 |
+
step=8,
|
| 506 |
+
value=1280, # Set a default value
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
| 510 |
+
with gr.Group():
|
| 511 |
+
overlap_percentage = gr.Slider(
|
| 512 |
+
label="Mask overlap (%)",
|
| 513 |
+
minimum=1,
|
| 514 |
+
maximum=50,
|
| 515 |
+
value=10,
|
| 516 |
+
step=1
|
| 517 |
+
)
|
| 518 |
+
with gr.Row():
|
| 519 |
+
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
| 520 |
+
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
| 521 |
+
with gr.Row():
|
| 522 |
+
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
| 523 |
+
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
| 524 |
+
with gr.Row():
|
| 525 |
+
resize_option = gr.Radio(
|
| 526 |
+
label="Resize input image",
|
| 527 |
+
choices=["Full", "80%", "50%", "33%", "25%", "Custom"],
|
| 528 |
+
value="Full"
|
| 529 |
+
)
|
| 530 |
+
custom_resize_percentage = gr.Slider(
|
| 531 |
+
label="Custom resize (%)",
|
| 532 |
+
minimum=1,
|
| 533 |
+
maximum=100,
|
| 534 |
+
step=1,
|
| 535 |
+
value=50,
|
| 536 |
+
visible=False
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
with gr.Column():
|
| 540 |
+
preview_button = gr.Button("Preview alignment and mask")
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
gr.Examples(
|
| 544 |
+
examples=[
|
| 545 |
+
["./examples/example_1.webp", 1280, 720, "Middle"],
|
| 546 |
+
["./examples/example_2.jpg", 1440, 810, "Left"],
|
| 547 |
+
["./examples/example_3.jpg", 1024, 1024, "Top"],
|
| 548 |
+
["./examples/example_3.jpg", 1024, 1024, "Bottom"],
|
| 549 |
+
],
|
| 550 |
+
inputs=[input_image, width_slider, height_slider, alignment_dropdown],
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
with gr.Column():
|
| 556 |
+
result = ImageSlider(
|
| 557 |
+
interactive=False,
|
| 558 |
+
label="Generated Image",
|
| 559 |
+
)
|
| 560 |
+
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
| 561 |
+
|
| 562 |
+
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
| 563 |
+
preview_image = gr.Image(label="Preview")
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
def use_output_as_input(output_image):
|
| 568 |
+
"""Sets the generated output as the new input image."""
|
| 569 |
+
return gr.update(value=output_image[1])
|
| 570 |
+
|
| 571 |
+
use_as_input_button.click(
|
| 572 |
+
fn=use_output_as_input,
|
| 573 |
+
inputs=[result],
|
| 574 |
+
outputs=[input_image]
|
| 575 |
+
)
|
| 576 |
+
|
| 577 |
# Set up event handlers
|
| 578 |
+
run_button.click(
|
| 579 |
+
fn=fill_image,
|
| 580 |
+
inputs=[prompt, input_image, model_selection, paste_back],
|
| 581 |
+
outputs=result,
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
target_ratio.change(
|
| 585 |
+
fn=preload_presets,
|
| 586 |
+
inputs=[target_ratio, width_slider, height_slider],
|
| 587 |
+
outputs=[width_slider, height_slider, settings_panel],
|
| 588 |
+
queue=False
|
| 589 |
+
)
|
| 590 |
+
|
| 591 |
+
width_slider.change(
|
| 592 |
+
fn=select_the_right_preset,
|
| 593 |
+
inputs=[width_slider, height_slider],
|
| 594 |
+
outputs=[target_ratio],
|
| 595 |
+
queue=False
|
| 596 |
+
)
|
| 597 |
+
|
| 598 |
+
height_slider.change(
|
| 599 |
+
fn=select_the_right_preset,
|
| 600 |
+
inputs=[width_slider, height_slider],
|
| 601 |
+
outputs=[target_ratio],
|
| 602 |
+
queue=False
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
resize_option.change(
|
| 606 |
+
fn=toggle_custom_resize_slider,
|
| 607 |
+
inputs=[resize_option],
|
| 608 |
+
outputs=[custom_resize_percentage],
|
| 609 |
+
queue=False
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
runout_button.click( # Clear the result
|
| 613 |
+
fn=clear_result,
|
| 614 |
+
inputs=None,
|
| 615 |
+
outputs=result,
|
| 616 |
+
).then( # Generate the new image
|
| 617 |
+
fn=infer,
|
| 618 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 619 |
+
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 620 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 621 |
+
outputs=result,
|
| 622 |
+
).then( # Update the history gallery
|
| 623 |
+
fn=lambda x, history: update_history(x[1], history),
|
| 624 |
+
inputs=[result, history_gallery],
|
| 625 |
+
outputs=history_gallery,
|
| 626 |
+
).then( # Show the "Use as Input Image" button
|
| 627 |
+
fn=lambda: gr.update(visible=True),
|
| 628 |
+
inputs=None,
|
| 629 |
+
outputs=use_as_input_button,
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
prompt_input.submit( # Clear the result
|
| 633 |
+
fn=clear_result,
|
| 634 |
+
inputs=None,
|
| 635 |
+
outputs=result,
|
| 636 |
+
).then( # Generate the new image
|
| 637 |
+
fn=infer,
|
| 638 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 639 |
+
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 640 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 641 |
+
outputs=result,
|
| 642 |
+
).then( # Update the history gallery
|
| 643 |
+
fn=lambda x, history: update_history(x[1], history),
|
| 644 |
+
inputs=[result, history_gallery],
|
| 645 |
+
outputs=history_gallery,
|
| 646 |
+
).then( # Show the "Use as Input Image" button
|
| 647 |
+
fn=lambda: gr.update(visible=True),
|
| 648 |
+
inputs=None,
|
| 649 |
+
outputs=use_as_input_button,
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
preview_button.click(
|
| 653 |
+
fn=preview_image_and_mask,
|
| 654 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
|
| 655 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 656 |
+
outputs=preview_image,
|
| 657 |
+
queue=False
|
| 658 |
)
|
| 659 |
|
| 660 |
+
runout_button.click(
|
| 661 |
+
fn=infer,
|
| 662 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 663 |
+
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 664 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 665 |
+
outputs=result,
|
| 666 |
)
|
| 667 |
|
| 668 |
preview_button.click(
|
| 669 |
fn=preview_image_and_mask,
|
| 670 |
+
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
|
| 671 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 672 |
+
outputs=preview_image,
|
| 673 |
+
queue=False
|
| 674 |
)
|
| 675 |
|
| 676 |
resize_option.change(
|
|
|
|
| 679 |
outputs=[custom_resize_percentage]
|
| 680 |
)
|
| 681 |
|
| 682 |
+
demo.launch(show_error=True)
|
|
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import AutoencoderKL, TCDScheduler
|
| 5 |
+
from diffusers.models.model_loading_utils import load_state_dict
|
| 6 |
+
from gradio_imageslider import ImageSlider
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
|
| 9 |
+
from controlnet_union import ControlNetModel_Union
|
| 10 |
+
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
| 11 |
+
|
| 12 |
+
from PIL import Image, ImageDraw
|
| 13 |
+
import numpy as np
|
| 14 |
+
|
| 15 |
+
MODELS = {
|
| 16 |
+
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
| 17 |
+
"Lustify Lightning": "GraydientPlatformAPI/lustify-lightning",
|
| 18 |
+
"Juggernaut XL Lightning": "RunDiffusion/Juggernaut-XL-Lightning",
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
config_file = hf_hub_download(
|
| 22 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
| 23 |
+
filename="config_promax.json",
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
config = ControlNetModel_Union.load_config(config_file)
|
| 27 |
+
controlnet_model = ControlNetModel_Union.from_config(config)
|
| 28 |
+
model_file = hf_hub_download(
|
| 29 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
| 30 |
+
filename="diffusion_pytorch_model_promax.safetensors",
|
| 31 |
+
)
|
| 32 |
+
state_dict = load_state_dict(model_file)
|
| 33 |
+
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
| 34 |
+
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
| 35 |
+
)
|
| 36 |
+
model.to(device="cuda", dtype=torch.float16)
|
| 37 |
+
|
| 38 |
+
vae = AutoencoderKL.from_pretrained(
|
| 39 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
| 40 |
+
).to("cuda")
|
| 41 |
+
|
| 42 |
+
# Move pipeline loading into a function to enable lazy loading
|
| 43 |
+
def load_pipeline(model_name):
|
| 44 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 45 |
+
MODELS[model_name],
|
| 46 |
+
torch_dtype=torch.float16,
|
| 47 |
+
vae=vae,
|
| 48 |
+
controlnet=model,
|
| 49 |
+
)
|
| 50 |
+
pipe.to("cuda")
|
| 51 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 52 |
+
return pipe
|
| 53 |
+
|
| 54 |
+
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
| 55 |
+
"""Checks if the image can be expanded based on the alignment."""
|
| 56 |
+
if alignment in ("Left", "Right") and source_width >= target_width:
|
| 57 |
+
return False
|
| 58 |
+
if alignment in ("Top", "Bottom") and source_height >= target_height:
|
| 59 |
+
return False
|
| 60 |
+
return True
|
| 61 |
+
|
| 62 |
+
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 63 |
+
target_size = (width, height)
|
| 64 |
+
|
| 65 |
+
# Calculate the scaling factor to fit the image within the target size
|
| 66 |
+
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
| 67 |
+
new_width = int(image.width * scale_factor)
|
| 68 |
+
new_height = int(image.height * scale_factor)
|
| 69 |
+
|
| 70 |
+
# Resize the source image to fit within target size
|
| 71 |
+
source = image.resize((new_width, new_height), Image.LANCZOS)
|
| 72 |
+
|
| 73 |
+
# Apply resize option using percentages
|
| 74 |
+
if resize_option == "Full":
|
| 75 |
+
resize_percentage = 100
|
| 76 |
+
elif resize_option == "50%":
|
| 77 |
+
resize_percentage = 50
|
| 78 |
+
elif resize_option == "33%":
|
| 79 |
+
resize_percentage = 33
|
| 80 |
+
elif resize_option == "25%":
|
| 81 |
+
resize_percentage = 25
|
| 82 |
+
else: # Custom
|
| 83 |
+
resize_percentage = custom_resize_percentage
|
| 84 |
+
|
| 85 |
+
# Calculate new dimensions based on percentage
|
| 86 |
+
resize_factor = resize_percentage / 100
|
| 87 |
+
new_width = int(source.width * resize_factor)
|
| 88 |
+
new_height = int(source.height * resize_factor)
|
| 89 |
+
|
| 90 |
+
# Ensure minimum size of 64 pixels
|
| 91 |
+
new_width = max(new_width, 64)
|
| 92 |
+
new_height = max(new_height, 64)
|
| 93 |
+
|
| 94 |
+
# Resize the image
|
| 95 |
+
source = source.resize((new_width, new_height), Image.LANCZOS)
|
| 96 |
+
|
| 97 |
+
# Calculate the overlap in pixels based on the percentage
|
| 98 |
+
overlap_x = int(new_width * (overlap_percentage / 100))
|
| 99 |
+
overlap_y = int(new_height * (overlap_percentage / 100))
|
| 100 |
+
|
| 101 |
+
# Ensure minimum overlap of 1 pixel
|
| 102 |
+
overlap_x = max(overlap_x, 1)
|
| 103 |
+
overlap_y = max(overlap_y, 1)
|
| 104 |
+
|
| 105 |
+
# Calculate margins based on alignment
|
| 106 |
+
if alignment == "Middle":
|
| 107 |
+
margin_x = (target_size[0] - new_width) // 2
|
| 108 |
+
margin_y = (target_size[1] - new_height) // 2
|
| 109 |
+
elif alignment == "Left":
|
| 110 |
+
margin_x = 0
|
| 111 |
+
margin_y = (target_size[1] - new_height) // 2
|
| 112 |
+
elif alignment == "Right":
|
| 113 |
+
margin_x = target_size[0] - new_width
|
| 114 |
+
margin_y = (target_size[1] - new_height) // 2
|
| 115 |
+
elif alignment == "Top":
|
| 116 |
+
margin_x = (target_size[0] - new_width) // 2
|
| 117 |
+
margin_y = 0
|
| 118 |
+
elif alignment == "Bottom":
|
| 119 |
+
margin_x = (target_size[0] - new_width) // 2
|
| 120 |
+
margin_y = target_size[1] - new_height
|
| 121 |
+
|
| 122 |
+
# Adjust margins to eliminate gaps
|
| 123 |
+
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
| 124 |
+
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
| 125 |
+
|
| 126 |
+
# Create a new background image and paste the resized source image
|
| 127 |
+
background = Image.new('RGB', target_size, (255, 255, 255))
|
| 128 |
+
background.paste(source, (margin_x, margin_y))
|
| 129 |
+
|
| 130 |
+
# Create the mask
|
| 131 |
+
mask = Image.new('L', target_size, 255)
|
| 132 |
+
mask_draw = ImageDraw.Draw(mask)
|
| 133 |
+
|
| 134 |
+
# Calculate overlap areas
|
| 135 |
+
white_gaps_patch = 2
|
| 136 |
+
|
| 137 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
| 138 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
| 139 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
| 140 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
| 141 |
+
|
| 142 |
+
if alignment == "Left":
|
| 143 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
| 144 |
+
elif alignment == "Right":
|
| 145 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
|
| 146 |
+
elif alignment == "Top":
|
| 147 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y
|
| 148 |
+
elif alignment == "Bottom":
|
| 149 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# Draw the mask
|
| 153 |
+
mask_draw.rectangle([
|
| 154 |
+
(left_overlap, top_overlap),
|
| 155 |
+
(right_overlap, bottom_overlap)
|
| 156 |
+
], fill=0)
|
| 157 |
+
|
| 158 |
+
return background, mask
|
| 159 |
+
|
| 160 |
+
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 161 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 162 |
+
|
| 163 |
+
# Create a preview image showing the mask
|
| 164 |
+
preview = background.copy().convert('RGBA')
|
| 165 |
+
|
| 166 |
+
# Create a semi-transparent red overlay
|
| 167 |
+
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
|
| 168 |
+
|
| 169 |
+
# Convert black pixels in the mask to semi-transparent red
|
| 170 |
+
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
|
| 171 |
+
red_mask.paste(red_overlay, (0, 0), mask)
|
| 172 |
+
|
| 173 |
+
# Overlay the red mask on the background
|
| 174 |
+
preview = Image.alpha_composite(preview, red_mask)
|
| 175 |
+
|
| 176 |
+
return preview
|
| 177 |
+
|
| 178 |
+
@spaces.GPU(duration=24)
|
| 179 |
+
def inpaint(prompt, image, model_name, paste_back):
|
| 180 |
+
global pipe
|
| 181 |
+
if pipe.config.model_name != MODELS[model_name]:
|
| 182 |
+
# Lazily load the pipeline for the selected model
|
| 183 |
+
pipe = load_pipeline(model_name)
|
| 184 |
+
|
| 185 |
+
mask = Image.fromarray(image["mask"]).convert("L")
|
| 186 |
+
image = Image.fromarray(image["image"])
|
| 187 |
+
|
| 188 |
+
result = pipe(prompt=prompt, image=image, mask_image=mask).images[0]
|
| 189 |
+
|
| 190 |
+
if paste_back:
|
| 191 |
+
result.paste(image, (0, 0), Image.fromarray(255 - np.array(mask)))
|
| 192 |
+
|
| 193 |
+
return result
|
| 194 |
+
|
| 195 |
+
@spaces.GPU(duration=24)
|
| 196 |
+
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 197 |
+
# Use the currently loaded pipeline
|
| 198 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 199 |
+
|
| 200 |
+
if not can_expand(background.width, background.height, width, height, alignment):
|
| 201 |
+
alignment = "Middle"
|
| 202 |
+
|
| 203 |
+
cnet_image = background.copy()
|
| 204 |
+
cnet_image.paste(0, (0, 0), mask)
|
| 205 |
+
|
| 206 |
+
final_prompt = f"{prompt_input} , high quality, 4k"
|
| 207 |
+
|
| 208 |
+
(
|
| 209 |
+
prompt_embeds,
|
| 210 |
+
negative_prompt_embeds,
|
| 211 |
+
pooled_prompt_embeds,
|
| 212 |
+
negative_pooled_prompt_embeds,
|
| 213 |
+
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
| 214 |
+
|
| 215 |
+
for image in pipe(
|
| 216 |
+
prompt_embeds=prompt_embeds,
|
| 217 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 218 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 219 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 220 |
+
image=cnet_image,
|
| 221 |
+
num_inference_steps=num_inference_steps
|
| 222 |
+
):
|
| 223 |
+
yield cnet_image, image
|
| 224 |
+
|
| 225 |
+
image = image.convert("RGBA")
|
| 226 |
+
cnet_image.paste(image, (0, 0), mask)
|
| 227 |
+
|
| 228 |
+
yield background, cnet_image
|
| 229 |
+
|
| 230 |
+
def clear_result():
|
| 231 |
+
"""Clears the result ImageSlider."""
|
| 232 |
+
return gr.update(value=None)
|
| 233 |
+
|
| 234 |
+
def preload_presets(target_ratio, ui_width, ui_height):
|
| 235 |
+
"""Updates the width and height sliders based on the selected aspect ratio."""
|
| 236 |
+
if target_ratio == "9:16":
|
| 237 |
+
changed_width = 720
|
| 238 |
+
changed_height = 1280
|
| 239 |
+
return changed_width, changed_height, gr.update()
|
| 240 |
+
elif target_ratio == "16:9":
|
| 241 |
+
changed_width = 1280
|
| 242 |
+
changed_height = 720
|
| 243 |
+
return changed_width, changed_height, gr.update()
|
| 244 |
+
elif target_ratio == "1:1":
|
| 245 |
+
changed_width = 1024
|
| 246 |
+
changed_height = 1024
|
| 247 |
+
return changed_width, changed_height, gr.update()
|
| 248 |
+
elif target_ratio == "Custom":
|
| 249 |
+
return ui_width, ui_height, gr.update(open=True)
|
| 250 |
+
|
| 251 |
+
def select_the_right_preset(user_width, user_height):
|
| 252 |
+
if user_width == 720 and user_height == 1280:
|
| 253 |
+
return "9:16"
|
| 254 |
+
elif user_width == 1280 and user_height == 720:
|
| 255 |
+
return "16:9"
|
| 256 |
+
elif user_width == 1024 and user_height == 1024:
|
| 257 |
+
return "1:1"
|
| 258 |
+
else:
|
| 259 |
+
return "Custom"
|
| 260 |
+
|
| 261 |
+
def toggle_custom_resize_slider(resize_option):
|
| 262 |
+
return gr.update(visible=(resize_option == "Custom"))
|
| 263 |
+
|
| 264 |
+
def update_history(new_image, history):
|
| 265 |
+
"""Updates the history gallery with the new image."""
|
| 266 |
+
if history is None:
|
| 267 |
+
history = []
|
| 268 |
+
history.insert(0, new_image)
|
| 269 |
+
return history
|
| 270 |
+
|
| 271 |
+
css = """
|
| 272 |
+
.gradio-container {
|
| 273 |
+
width: 1200px !important;
|
| 274 |
+
}
|
| 275 |
+
"""
|
| 276 |
+
|
| 277 |
+
title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
| 278 |
+
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div>
|
| 279 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
| 280 |
+
<p style="display: flex;gap: 6px;">
|
| 281 |
+
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpout?duplicate=true">
|
| 282 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
|
| 283 |
+
</a> to skip the queue and enjoy faster inference on the GPU of your choice
|
| 284 |
+
</p>
|
| 285 |
+
</div>
|
| 286 |
+
"""
|
| 287 |
+
|
| 288 |
+
with gr.Blocks(css=css) as demo:
|
| 289 |
+
gr.Markdown("# Diffusers Inpaint and Outpaint")
|
| 290 |
+
|
| 291 |
+
with gr.Tabs():
|
| 292 |
+
with gr.TabItem("Inpaint"):
|
| 293 |
+
with gr.Column():
|
| 294 |
+
# inpaint_image = gr.Image(type="pil", label="Input Image", tool="sketch")
|
| 295 |
+
inpaint_image = gr.ImageEditor(type="pil", label="Input Image")
|
| 296 |
+
|
| 297 |
+
inpaint_prompt = gr.Textbox(label="Prompt", info="Describe what to inpaint the mask with", lines=3)
|
| 298 |
+
inpaint_model = gr.Dropdown(choices=list(MODELS.keys()), value="RealVisXL V5.0 Lightning", label="Model")
|
| 299 |
+
inpaint_paste_back = gr.Checkbox(True, label="Paste back original")
|
| 300 |
+
inpaint_button = gr.Button("Generate Inpaint")
|
| 301 |
+
inpaint_result = ImageSlider(label="Inpaint Result")
|
| 302 |
+
|
| 303 |
+
with gr.TabItem("Outpaint"):
|
| 304 |
+
with gr.Column():
|
| 305 |
+
outpaint_image = gr.Image(type="pil", label="Input Image")
|
| 306 |
+
outpaint_prompt = gr.Textbox(label="Prompt (Optional)")
|
| 307 |
+
with gr.Row():
|
| 308 |
+
width_slider = gr.Slider(label="Target Width", minimum=720, maximum=1536, step=8, value=720)
|
| 309 |
+
height_slider = gr.Slider(label="Target Height", minimum=720, maximum=1536, step=8, value=1280)
|
| 310 |
+
alignment_dropdown = gr.Dropdown(choices=["Middle", "Left", "Right", "Top", "Bottom"], value="Middle", label="Alignment")
|
| 311 |
+
|
| 312 |
+
with gr.Accordion("Advanced settings", open=False):
|
| 313 |
+
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
| 314 |
+
overlap_percentage = gr.Slider(label="Mask overlap (%)", minimum=1, maximum=50, value=10, step=1)
|
| 315 |
+
with gr.Row():
|
| 316 |
+
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
| 317 |
+
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
| 318 |
+
with gr.Row():
|
| 319 |
+
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
| 320 |
+
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
| 321 |
+
resize_option = gr.Radio(label="Resize input image", choices=["Full", "50%", "33%", "25%", "Custom"], value="Full")
|
| 322 |
+
custom_resize_percentage = gr.Slider(label="Custom resize (%)", minimum=1, maximum=100, step=1, value=50, visible=False)
|
| 323 |
+
|
| 324 |
+
outpaint_button = gr.Button("Generate Outpaint")
|
| 325 |
+
preview_button = gr.Button("Preview alignment and mask")
|
| 326 |
+
outpaint_result = ImageSlider(label="Outpaint Result")
|
| 327 |
+
preview_image = gr.Image(label="Preview")
|
| 328 |
+
|
| 329 |
+
# Set up event handlers
|
| 330 |
+
inpaint_button.click(
|
| 331 |
+
fn=inpaint,
|
| 332 |
+
inputs=[inpaint_prompt, inpaint_image, inpaint_model, inpaint_paste_back],
|
| 333 |
+
outputs=inpaint_result
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
outpaint_button.click(
|
| 337 |
+
fn=outpaint,
|
| 338 |
+
inputs=[outpaint_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 339 |
+
resize_option, custom_resize_percentage, outpaint_prompt, alignment_dropdown,
|
| 340 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 341 |
+
outputs=outpaint_result
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
preview_button.click(
|
| 345 |
+
fn=preview_image_and_mask,
|
| 346 |
+
inputs=[outpaint_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
|
| 347 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 348 |
+
outputs=preview_image
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
resize_option.change(
|
| 352 |
+
fn=lambda x: gr.update(visible=(x == "Custom")),
|
| 353 |
+
inputs=[resize_option],
|
| 354 |
+
outputs=[custom_resize_percentage]
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
demo.launch(share=False)
|