Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import os | |
| import torch | |
| import numpy as np | |
| import cv2 | |
| import huggingface_hub | |
| import matplotlib.pyplot as plt | |
| from PIL import Image | |
| from sam2.build_sam import build_sam2 | |
| from sam2.sam2_image_predictor import SAM2ImagePredictor | |
| # # Remove all CUDA-specific configurations | |
| # torch.autocast(device_type="cpu", dtype=torch.float32).__enter__() | |
| def preprocess_image(image): | |
| return image, gr.State([]), gr.State([]), image | |
| def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData): | |
| print(f"You selected {evt.value} at {evt.index} from {evt.target}") | |
| tracking_points.value.append(evt.index) | |
| print(f"TRACKING POINT: {tracking_points.value}") | |
| if point_type == "include": | |
| trackings_input_label.value.append(1) | |
| elif point_type == "exclude": | |
| trackings_input_label.value.append(0) | |
| print(f"TRACKING INPUT LABEL: {trackings_input_label.value}") | |
| transparent_background = Image.open(first_frame_path).convert('RGBA') | |
| w, h = transparent_background.size | |
| fraction = 0.02 | |
| radius = int(fraction * min(w, h)) | |
| transparent_layer = np.zeros((h, w, 4), dtype=np.uint8) | |
| for index, track in enumerate(tracking_points.value): | |
| if trackings_input_label.value[index] == 1: | |
| cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1) | |
| else: | |
| cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1) | |
| transparent_layer = Image.fromarray(transparent_layer, 'RGBA') | |
| selected_point_map = Image.alpha_composite(transparent_background, transparent_layer) | |
| return tracking_points, trackings_input_label, selected_point_map | |
| def show_mask(mask, ax, random_color=False, borders=True): | |
| if random_color: | |
| color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
| else: | |
| color = np.array([30/255, 144/255, 255/255, 0.6]) | |
| h, w = mask.shape[-2:] | |
| mask = mask.astype(np.uint8) | |
| mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
| if borders: | |
| contours, _= cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
| contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours] | |
| mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2) | |
| ax.imshow(mask_image) | |
| def show_points(coords, labels, ax, marker_size=200): | |
| pos_points = coords[labels==1] | |
| neg_points = coords[labels==0] | |
| ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
| ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
| def show_box(box, ax): | |
| x0, y0 = box[0], box[1] | |
| w, h = box[2] - box[0], box[3] - box[1] | |
| ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) | |
| def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True): | |
| combined_images = [] | |
| mask_images = [] | |
| for i, (mask, score) in enumerate(zip(masks, scores)): | |
| plt.figure(figsize=(10, 10)) | |
| plt.imshow(image) | |
| show_mask(mask, plt.gca(), borders=borders) | |
| plt.axis('off') | |
| combined_filename = f"combined_image_{i+1}.jpg" | |
| plt.savefig(combined_filename, format='jpg', bbox_inches='tight') | |
| combined_images.append(combined_filename) | |
| plt.close() | |
| mask_image = np.zeros_like(image, dtype=np.uint8) | |
| mask_layer = (mask > 0).astype(np.uint8) * 255 | |
| for c in range(3): | |
| mask_image[:, :, c] = mask_layer | |
| mask_filename = f"mask_image_{i+1}.png" | |
| Image.fromarray(mask_image).save(mask_filename) | |
| mask_images.append(mask_filename) | |
| return combined_images, mask_images | |
| def expand_contract_mask(mask, px, expand=True): | |
| kernel = np.ones((px, px), np.uint8) | |
| if expand: | |
| return cv2.dilate(mask, kernel, iterations=1) | |
| else: | |
| return cv2.erode(mask, kernel, iterations=1) | |
| def feather_mask(mask, feather_size=10): | |
| feathered_mask = mask.copy() | |
| Feathered_region = mask > 0 | |
| Feathered_region = cv2.dilate(Feathered_region.astype(np.uint8), np.ones((feather_size, feather_size), np.uint8), iterations=1) | |
| Feathered_region = Feathered_region & (~mask.astype(bool)) | |
| for i in range(1, feather_size + 1): | |
| weight = i / (feather_size + 1) | |
| feathered_mask[Feathered_region] = feathered_mask[Feathered_region] * (1 - weight) + weight | |
| return feathered_mask | |
| def process_mask(mask, expand_contract_px, expand, feathering_enabled, feather_size): | |
| if expand_contract_px > 0: | |
| mask = expand_contract_mask(mask, expand_contract_px, expand) | |
| if feathering_enabled: | |
| mask = feather_mask(mask, feather_size) | |
| return mask | |
| def sam_process(input_image, checkpoint, tracking_points, trackings_input_label, expand_contract_px, expand, feathering_enabled, feather_size): | |
| image = Image.open(input_image) | |
| image = np.array(image.convert("RGB")) | |
| sam21_hfmap = { | |
| "tiny": "facebook/sam2.1-hiera-tiny", | |
| "small": "facebook/sam2.1-hiera-small", | |
| "base-plus": "facebook/sam2.1-hiera-base-plus", | |
| "large": "facebook/sam2.1-hiera-large", | |
| } | |
| # sam2_checkpoint, model_cfg = checkpoint_map[checkpoint] | |
| # Use CPU for both model and computations | |
| # sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cpu") | |
| predictor = SAM2ImagePredictor.from_pretrained(sam21_hfmap[checkpoint], device="cuda") | |
| # predictor = SAM2ImagePredictor(sam2_model) | |
| predictor.set_image(image) | |
| input_point = np.array(tracking_points.value) | |
| input_label = np.array(trackings_input_label.value) | |
| masks, scores, logits = predictor.predict( | |
| point_coords=input_point, | |
| point_labels=input_label, | |
| multimask_output=False, | |
| ) | |
| sorted_ind = np.argsort(scores)[::-1] | |
| masks = masks[sorted_ind] | |
| scores = scores[sorted_ind] | |
| processed_masks = [] | |
| for mask in masks: | |
| processed_mask = process_mask(mask, expand_contract_px, expand, feathering_enabled, feather_size) | |
| processed_masks.append(processed_mask) | |
| results, mask_results = show_masks(image, processed_masks, scores, | |
| point_coords=input_point, | |
| input_labels=input_label, | |
| borders=True) | |
| return results[0], mask_results[0] | |
| with gr.Blocks() as demo: | |
| first_frame_path = gr.State() | |
| tracking_points = gr.State([]) | |
| trackings_input_label = gr.State([]) | |
| with gr.Column(): | |
| gr.Markdown("# SAM2 Image Predictor / Masking Assistant") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False) | |
| points_map = gr.Image(label="points map", type="filepath", interactive=True) | |
| with gr.Row(): | |
| point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include") | |
| clear_points_btn = gr.Button("Clear Points") | |
| checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="base-plus") | |
| with gr.Row(): | |
| expand_contract_px = gr.Slider(minimum=0, maximum=50, value=0, label="Expand/Contract (pixels)") | |
| expand = gr.Radio(["Expand", "Contract"], value="Expand", label="Action") | |
| with gr.Row(): | |
| feathering_enabled = gr.Checkbox(value=False, label="Enable Feathering") | |
| feather_size = gr.Slider(minimum=1, maximum=50, value=10, label="Feathering Size", visible=False) | |
| submit_btn = gr.Button("Submit") | |
| with gr.Column(): | |
| output_result = gr.Image() | |
| output_result_mask = gr.Image() | |
| clear_points_btn.click( | |
| fn=preprocess_image, | |
| inputs=input_image, | |
| outputs=[first_frame_path, tracking_points, trackings_input_label, points_map], | |
| queue=False | |
| ) | |
| points_map.upload( | |
| fn=preprocess_image, | |
| inputs=[points_map], | |
| outputs=[first_frame_path, tracking_points, trackings_input_label, input_image], | |
| queue=False | |
| ) | |
| points_map.select( | |
| fn=get_point, | |
| inputs=[point_type, tracking_points, trackings_input_label, first_frame_path], | |
| outputs=[tracking_points, trackings_input_label, points_map], | |
| queue=False | |
| ) | |
| submit_btn.click( | |
| fn=sam_process, | |
| inputs=[input_image, checkpoint, tracking_points, trackings_input_label, expand_contract_px, expand, feathering_enabled, feather_size], | |
| outputs=[output_result, output_result_mask] | |
| ) | |
| feathering_enabled.change( | |
| fn=lambda enabled: gr.update(visible=enabled), | |
| inputs=[feathering_enabled], | |
| outputs=[feather_size] | |
| ) | |
| demo.launch(show_error=True) |