Spaces:
Runtime error
Runtime error
Create app_alpha.py
Browse files- app_alpha.py +221 -0
app_alpha.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import spaces
|
| 6 |
+
import torch
|
| 7 |
+
from huggingface_hub import hf_hub_download, HfApi
|
| 8 |
+
from diffusers import FluxPriorReduxPipeline, FluxPipeline
|
| 9 |
+
from diffusers.utils import load_image
|
| 10 |
+
import os
|
| 11 |
+
api = HfApi(
|
| 12 |
+
token=os.getenv('HF_TOKEN'), # Token is not persisted on the machine.
|
| 13 |
+
)
|
| 14 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 15 |
+
MAX_IMAGE_SIZE = 2048
|
| 16 |
+
|
| 17 |
+
pipe = FluxPipeline.from_pretrained(
|
| 18 |
+
"black-forest-labs/FLUX.1-dev",
|
| 19 |
+
torch_dtype=torch.bfloat16,
|
| 20 |
+
token=os.getenv('HF_TOKEN'),
|
| 21 |
+
).to("cuda")
|
| 22 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125)
|
| 23 |
+
pipe.fuse_lora(lora_scale=0.125)
|
| 24 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
| 25 |
+
|
| 26 |
+
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(
|
| 27 |
+
"ostris/Flex.1-alpha-Redux",
|
| 28 |
+
text_encoder=pipe.text_encoder,
|
| 29 |
+
tokenizer=pipe.tokenizer,
|
| 30 |
+
text_encoder_2=pipe.text_encoder_2,
|
| 31 |
+
tokenizer_2=pipe.tokenizer_2,
|
| 32 |
+
torch_dtype=torch.bfloat16
|
| 33 |
+
).to("cuda")
|
| 34 |
+
|
| 35 |
+
examples = [[Image.open("mona_lisa.jpg"), "pink hair, at the beach", None, "", 0.035, 1., 1., 1., 1., 0, False],
|
| 36 |
+
[Image.open("1665_Girl_with_a_Pearl_Earring.jpg"), "", Image.open("dali_example.jpg"), "", 0.08, .4, .6, .33, 1., 1912857110, False]]
|
| 37 |
+
|
| 38 |
+
@spaces.GPU
|
| 39 |
+
def infer(control_image, prompt, image_2, prompt_2, reference_scale= 0.03 ,
|
| 40 |
+
prompt_embeds_scale_1 =1, prompt_embeds_scale_2 =1, pooled_prompt_embeds_scale_1 =1, pooled_prompt_embeds_scale_2 =1,
|
| 41 |
+
seed=42, randomize_seed=False, width=1024, height=1024,
|
| 42 |
+
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 43 |
+
if randomize_seed:
|
| 44 |
+
seed = random.randint(0, MAX_SEED)
|
| 45 |
+
if image_2 is not None:
|
| 46 |
+
pipe_prior_output = pipe_prior_redux([control_image, image_2],
|
| 47 |
+
prompt=[prompt, prompt_2],
|
| 48 |
+
prompt_embeds_scale = [prompt_embeds_scale_1, prompt_embeds_scale_2],
|
| 49 |
+
pooled_prompt_embeds_scale = [pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2])
|
| 50 |
+
else:
|
| 51 |
+
pipe_prior_output = pipe_prior_redux(control_image, prompt=prompt, prompt_embeds_scale = [prompt_embeds_scale_1],
|
| 52 |
+
pooled_prompt_embeds_scale = [pooled_prompt_embeds_scale_1])
|
| 53 |
+
cond_size = 729
|
| 54 |
+
hidden_size = 4096
|
| 55 |
+
max_sequence_length = 512
|
| 56 |
+
full_attention_size = max_sequence_length + hidden_size + cond_size
|
| 57 |
+
attention_mask = torch.zeros(
|
| 58 |
+
(full_attention_size, full_attention_size), device="cuda", dtype=torch.bfloat16
|
| 59 |
+
)
|
| 60 |
+
bias = torch.log(
|
| 61 |
+
torch.tensor(reference_scale, dtype=torch.bfloat16, device="cuda").clamp(min=1e-5, max=1)
|
| 62 |
+
)
|
| 63 |
+
attention_mask[:, max_sequence_length : max_sequence_length + cond_size] = bias
|
| 64 |
+
joint_attention_kwargs=dict(attention_mask=attention_mask)
|
| 65 |
+
images = pipe(
|
| 66 |
+
guidance_scale=guidance_scale,
|
| 67 |
+
width=width,
|
| 68 |
+
height=height,
|
| 69 |
+
num_inference_steps=num_inference_steps,
|
| 70 |
+
generator=torch.Generator("cpu").manual_seed(seed),
|
| 71 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 72 |
+
**pipe_prior_output,
|
| 73 |
+
).images[0]
|
| 74 |
+
return images, seed
|
| 75 |
+
|
| 76 |
+
css="""
|
| 77 |
+
#col-container {
|
| 78 |
+
margin: 0 auto;
|
| 79 |
+
max-width: 960px;
|
| 80 |
+
}
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
with gr.Blocks(css=css) as demo:
|
| 84 |
+
|
| 85 |
+
with gr.Column(elem_id="col-container"):
|
| 86 |
+
gr.Markdown(f"""# ⚡️ Fast FLUX.1 Redux [dev] ⚡️
|
| 87 |
+
An adapter for FLUX [dev] to create image variations combined with ByteDance [
|
| 88 |
+
Hyper FLUX 8 Steps LoRA](https://huggingface.co/ByteDance/Hyper-SD) 🏎️
|
| 89 |
+
Now with added support:
|
| 90 |
+
- prompt input
|
| 91 |
+
- attention masking for improved prompt adherence
|
| 92 |
+
- multiple image interpolation
|
| 93 |
+
|
| 94 |
+
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
| 95 |
+
""")
|
| 96 |
+
with gr.Row():
|
| 97 |
+
with gr.Column():
|
| 98 |
+
input_image = gr.Image(label="Image to create variations", type="pil")
|
| 99 |
+
prompt = gr.Text(
|
| 100 |
+
label="Prompt",
|
| 101 |
+
show_label=False,
|
| 102 |
+
max_lines=1,
|
| 103 |
+
placeholder="Enter your prompt",
|
| 104 |
+
container=False,
|
| 105 |
+
)
|
| 106 |
+
reference_scale = gr.Slider(
|
| 107 |
+
info="lower to enhance prompt adherence",
|
| 108 |
+
label="Masking Scale",
|
| 109 |
+
minimum=0.01,
|
| 110 |
+
maximum=0.08,
|
| 111 |
+
step=0.001,
|
| 112 |
+
value=0.03,
|
| 113 |
+
)
|
| 114 |
+
run_button = gr.Button("Run")
|
| 115 |
+
with gr.Column():
|
| 116 |
+
image_2 = gr.Image(label="2nd image to create interpolated variations", type="pil")
|
| 117 |
+
prompt_2 = gr.Text(
|
| 118 |
+
label="2nd Prompt",
|
| 119 |
+
show_label=False,
|
| 120 |
+
max_lines=1,
|
| 121 |
+
placeholder="Enter your prompt",
|
| 122 |
+
container=False,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
result = gr.Image(label="Result", show_label=False)
|
| 126 |
+
|
| 127 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 128 |
+
|
| 129 |
+
seed = gr.Slider(
|
| 130 |
+
label="Seed",
|
| 131 |
+
minimum=0,
|
| 132 |
+
maximum=MAX_SEED,
|
| 133 |
+
step=1,
|
| 134 |
+
value=0,
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 138 |
+
|
| 139 |
+
with gr.Row():
|
| 140 |
+
prompt_embeds_scale_1 = gr.Slider(
|
| 141 |
+
label="prompt embeds scale 1st image",
|
| 142 |
+
minimum=0,
|
| 143 |
+
maximum=1.5,
|
| 144 |
+
step=0.01,
|
| 145 |
+
value=1,
|
| 146 |
+
)
|
| 147 |
+
prompt_embeds_scale_2 = gr.Slider(
|
| 148 |
+
label="prompt embeds scale 2nd image",
|
| 149 |
+
minimum=0,
|
| 150 |
+
maximum=1.5,
|
| 151 |
+
step=0.01,
|
| 152 |
+
value=1,
|
| 153 |
+
)
|
| 154 |
+
pooled_prompt_embeds_scale_1 = gr.Slider(
|
| 155 |
+
label="pooled prompt embeds scale 1nd image",
|
| 156 |
+
minimum=0,
|
| 157 |
+
maximum=1.5,
|
| 158 |
+
step=0.01,
|
| 159 |
+
value=1,
|
| 160 |
+
)
|
| 161 |
+
pooled_prompt_embeds_scale_2 = gr.Slider(
|
| 162 |
+
label="pooled prompt embeds scale 2nd image",
|
| 163 |
+
minimum=0,
|
| 164 |
+
maximum=1.5,
|
| 165 |
+
step=0.01,
|
| 166 |
+
value=1,
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
with gr.Row():
|
| 170 |
+
|
| 171 |
+
width = gr.Slider(
|
| 172 |
+
label="Width",
|
| 173 |
+
minimum=256,
|
| 174 |
+
maximum=MAX_IMAGE_SIZE,
|
| 175 |
+
step=32,
|
| 176 |
+
value=1024,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
height = gr.Slider(
|
| 180 |
+
label="Height",
|
| 181 |
+
minimum=256,
|
| 182 |
+
maximum=MAX_IMAGE_SIZE,
|
| 183 |
+
step=32,
|
| 184 |
+
value=1024,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
with gr.Row():
|
| 188 |
+
|
| 189 |
+
guidance_scale = gr.Slider(
|
| 190 |
+
label="Guidance Scale",
|
| 191 |
+
minimum=1,
|
| 192 |
+
maximum=15,
|
| 193 |
+
step=0.1,
|
| 194 |
+
value=3.5,
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
num_inference_steps = gr.Slider(
|
| 198 |
+
label="Number of inference steps",
|
| 199 |
+
minimum=1,
|
| 200 |
+
maximum=30,
|
| 201 |
+
step=1,
|
| 202 |
+
value=8,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
gr.Examples(
|
| 206 |
+
examples=examples,
|
| 207 |
+
inputs=[input_image, prompt, image_2, prompt_2, reference_scale, prompt_embeds_scale_1, prompt_embeds_scale_2, pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2, seed, randomize_seed],
|
| 208 |
+
outputs=[result, seed],
|
| 209 |
+
fn=infer,
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
gr.on(
|
| 213 |
+
triggers=[run_button.click],
|
| 214 |
+
fn = infer,
|
| 215 |
+
inputs = [input_image, prompt, image_2, prompt_2, reference_scale, prompt_embeds_scale_1, prompt_embeds_scale_2, pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 216 |
+
outputs = [result, seed]
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
demo.launch()
|
| 220 |
+
|
| 221 |
+
|