Upload grad_cam_func.py
Browse files- grad_cam_func.py +150 -0
grad_cam_func.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
import ttach as tta
|
| 4 |
+
from typing import Callable, List, Tuple
|
| 5 |
+
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
|
| 6 |
+
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
|
| 7 |
+
from pytorch_grad_cam.utils.image import scale_cam_image
|
| 8 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
import config as config
|
| 12 |
+
import utils
|
| 13 |
+
|
| 14 |
+
class BaseCAM:
|
| 15 |
+
def __init__(self,
|
| 16 |
+
model: torch.nn.Module,
|
| 17 |
+
target_layers: List[torch.nn.Module],
|
| 18 |
+
use_cuda: bool = False,
|
| 19 |
+
reshape_transform: Callable = None,
|
| 20 |
+
compute_input_gradient: bool = False,
|
| 21 |
+
uses_gradients: bool = True) -> None:
|
| 22 |
+
|
| 23 |
+
self.model = model.eval()
|
| 24 |
+
self.target_layers = target_layers
|
| 25 |
+
self.cuda = use_cuda
|
| 26 |
+
if self.cuda:
|
| 27 |
+
self.model = model.cuda()
|
| 28 |
+
self.reshape_transform = reshape_transform
|
| 29 |
+
self.compute_input_gradient = compute_input_gradient
|
| 30 |
+
self.uses_gradients = uses_gradients
|
| 31 |
+
self.activations_and_grads = ActivationsAndGradients(
|
| 32 |
+
self.model, target_layers, reshape_transform)
|
| 33 |
+
|
| 34 |
+
""" Get a vector of weights for every channel in the target layer.
|
| 35 |
+
Methods that return weights channels,
|
| 36 |
+
will typically need to only implement this function. """
|
| 37 |
+
|
| 38 |
+
def get_cam_image(self,
|
| 39 |
+
input_tensor: torch.Tensor,
|
| 40 |
+
target_layer: torch.nn.Module,
|
| 41 |
+
targets: List[torch.nn.Module],
|
| 42 |
+
activations: torch.Tensor,
|
| 43 |
+
grads: torch.Tensor,
|
| 44 |
+
eigen_smooth: bool = False) -> np.ndarray:
|
| 45 |
+
|
| 46 |
+
return get_2d_projection(activations)
|
| 47 |
+
|
| 48 |
+
def forward(self,
|
| 49 |
+
input_tensor: torch.Tensor,
|
| 50 |
+
targets: List[torch.nn.Module],
|
| 51 |
+
eigen_smooth: bool = False) -> np.ndarray:
|
| 52 |
+
|
| 53 |
+
if self.cuda:
|
| 54 |
+
input_tensor = input_tensor.cuda()
|
| 55 |
+
|
| 56 |
+
if self.compute_input_gradient:
|
| 57 |
+
input_tensor = torch.autograd.Variable(input_tensor,
|
| 58 |
+
requires_grad=True)
|
| 59 |
+
|
| 60 |
+
outputs = self.activations_and_grads(input_tensor)
|
| 61 |
+
|
| 62 |
+
if targets is None:
|
| 63 |
+
bboxes = [[] for _ in range(1)]
|
| 64 |
+
for i in range(3):
|
| 65 |
+
batch_size, A, S, _, _ = outputs[i].shape
|
| 66 |
+
anchor = config.SCALED_ANCHORS[i]
|
| 67 |
+
boxes_scale_i = utils.cells_to_bboxes(
|
| 68 |
+
outputs[i], anchor, S=S, is_preds=True
|
| 69 |
+
)
|
| 70 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
| 71 |
+
bboxes[idx] += box
|
| 72 |
+
|
| 73 |
+
nms_boxes = utils.non_max_suppression(
|
| 74 |
+
bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint",
|
| 75 |
+
)
|
| 76 |
+
# target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1)
|
| 77 |
+
target_categories = [box[0] for box in nms_boxes]
|
| 78 |
+
targets = [ClassifierOutputTarget(
|
| 79 |
+
category) for category in target_categories]
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
if self.uses_gradients:
|
| 83 |
+
self.model.zero_grad()
|
| 84 |
+
loss = sum([target(output)
|
| 85 |
+
for target, output in zip(targets, outputs)])
|
| 86 |
+
loss.backward(retain_graph=True)
|
| 87 |
+
|
| 88 |
+
# In most of the saliency attribution papers, the saliency is
|
| 89 |
+
# computed with a single target layer.
|
| 90 |
+
# Commonly it is the last convolutional layer.
|
| 91 |
+
# Here we support passing a list with multiple target layers.
|
| 92 |
+
# It will compute the saliency image for every image,
|
| 93 |
+
# and then aggregate them (with a default mean aggregation).
|
| 94 |
+
# This gives you more flexibility in case you just want to
|
| 95 |
+
# use all conv layers for example, all Batchnorm layers,
|
| 96 |
+
# or something else.
|
| 97 |
+
|
| 98 |
+
cam_per_layer = self.compute_cam_per_layer(input_tensor,
|
| 99 |
+
targets,
|
| 100 |
+
eigen_smooth)
|
| 101 |
+
return self.aggregate_multi_layers(cam_per_layer)
|
| 102 |
+
|
| 103 |
+
def get_target_width_height(self,
|
| 104 |
+
input_tensor: torch.Tensor) -> Tuple[int, int]:
|
| 105 |
+
width, height = input_tensor.size(-1), input_tensor.size(-2)
|
| 106 |
+
return width, height
|
| 107 |
+
|
| 108 |
+
def compute_cam_per_layer(
|
| 109 |
+
self,
|
| 110 |
+
input_tensor: torch.Tensor,
|
| 111 |
+
targets: List[torch.nn.Module],
|
| 112 |
+
eigen_smooth: bool) -> np.ndarray:
|
| 113 |
+
|
| 114 |
+
activations_list = [a.cpu().data.numpy()
|
| 115 |
+
for a in self.activations_and_grads.activations]
|
| 116 |
+
grads_list = [g.cpu().data.numpy()
|
| 117 |
+
for g in self.activations_and_grads.gradients]
|
| 118 |
+
target_size = self.get_target_width_height(input_tensor)
|
| 119 |
+
|
| 120 |
+
cam_per_target_layer = []
|
| 121 |
+
# Loop over the saliency image from every layer
|
| 122 |
+
for i in range(len(self.target_layers)):
|
| 123 |
+
target_layer = self.target_layers[i]
|
| 124 |
+
layer_activations = None
|
| 125 |
+
layer_grads = None
|
| 126 |
+
if i < len(activations_list):
|
| 127 |
+
layer_activations = activations_list[i]
|
| 128 |
+
if i < len(grads_list):
|
| 129 |
+
layer_grads = grads_list[i]
|
| 130 |
+
|
| 131 |
+
cam = self.get_cam_image(input_tensor,
|
| 132 |
+
target_layer,
|
| 133 |
+
targets,
|
| 134 |
+
layer_activations,
|
| 135 |
+
layer_grads,
|
| 136 |
+
eigen_smooth)
|
| 137 |
+
cam = np.maximum(cam, 0)
|
| 138 |
+
scaled = scale_cam_image(cam, target_size)
|
| 139 |
+
cam_per_target_layer.append(scaled[:, None, :])
|
| 140 |
+
|
| 141 |
+
return cam_per_target_layer
|
| 142 |
+
|
| 143 |
+
def aggregate_multi_layers(
|
| 144 |
+
self,
|
| 145 |
+
cam_per_target_layer: np.ndarray) -> np.ndarray:
|
| 146 |
+
cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
|
| 147 |
+
cam_per_target_layer = np.maximum(cam_per_target_layer, 0)
|
| 148 |
+
result = np.mean(cam_per_target_layer, axis=1)
|
| 149 |
+
|
| 150 |
+
return scale_cam_image(result)
|