File size: 6,889 Bytes
6e57787
 
 
 
 
 
 
 
 
 
dd813d9
6e57787
 
 
 
 
 
 
 
d87498d
6e57787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd813d9
 
 
 
 
 
6e57787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd813d9
 
6e57787
dd813d9
 
6e57787
dd813d9
 
 
 
 
 
 
 
 
6e57787
dd813d9
 
 
6e57787
dd813d9
 
 
6e57787
dd813d9
 
 
 
 
 
 
 
 
6e57787
 
 
 
 
 
 
 
dd813d9
6e57787
a878cd0
dd813d9
6e57787
 
 
 
 
dd813d9
6e57787
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch, torchvision
from torchvision import transforms
import numpy as np
import gradio as gr
from PIL import Image

from torch.utils.data import DataLoader
import itertools
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import cv2 

import config as config
from model import YOLOv3
from loss import YoloLoss
from utils import get_loaders
import utils

new_state_dict = {}
state_dict = torch.load('results/Yolov3_Lavanya.pth', map_location=torch.device('cpu'))
for key, value in state_dict.items():
    new_key = key.replace('model.', '')
    new_state_dict[new_key] = value

model = YOLOv3(in_channels=3, num_classes=config.NUM_CLASSES)
model.load_state_dict(new_state_dict, strict=True)
model.eval()

classes = ("aeroplane",
    "bicycle",
    "bird",
    "boat",
    "bottle",
    "bus",
    "car",
    "cat",
    "chair",
    "cow",
    "diningtable",
    "dog",
    "horse",
    "motorbike",
    "person",
    "pottedplant",
    "sheep",
    "sofa",
    "train",
    "tvmonitor")


import grad_cam_func as gcf 
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
from pytorch_grad_cam.utils.image import show_cam_on_image

def inference(input_img=None, iou_threshold=0.6, conf_threshold=0.5, gc_trans=0.3):
    
    if input_img is not None:
        
        tranform_img = config.infer_transforms(image=input_img)
        transform_img = tranform_img['image'].unsqueeze(0)
                
        transform_img_visual = config.infer_transforms_visualization(image=input_img)['image']
        
        with torch.no_grad():
            outputs = model(transform_img)
            bboxes = [[] for _ in range(transform_img.shape[0])] # range of Batch size 
          
            for i in range(3):
                batch_size, A, S, _, _ = outputs[i].shape
                anchor = np.array(config.SCALED_ANCHORS[i])
                boxes_scale_i = utils.cells_to_bboxes(
                    outputs[i], anchor, S=S, is_preds=True)
                            
                for idx, (box) in enumerate(boxes_scale_i):
                    bboxes[idx] += box
                    
        
        nms_boxes = utils.non_max_suppression(bboxes[0], iou_threshold=iou_threshold,
                                        threshold=conf_threshold, box_format="midpoint",)
        
        
        image, boxes = transform_img_visual.permute(1,2,0), nms_boxes
        
        """Plots predicted bounding boxes on the image"""
        cmap = plt.get_cmap("tab20b")
        class_labels = config.PASCAL_CLASSES
        colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
        
        im = np.array(image)
        height, width, _ = im.shape

        # Create figure and axes
        fig, ax = plt.subplots(1)
        
        # Display the image
        ax.imshow(im)

        # box[0] is x midpoint, box[2] is width
        # box[1] is y midpoint, box[3] is height

        # Create a Rectangle patch
        for box in boxes:
            assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
            class_pred = box[0]
            box = box[2:]
            upper_left_x = box[0] - box[2] / 2
            upper_left_y = box[1] - box[3] / 2
            rect = patches.Rectangle(
                (upper_left_x * width, upper_left_y * height),
                box[2] * width,
                box[3] * height,
                linewidth=2,
                edgecolor=colors[int(class_pred)],
                facecolor="none",
            )
            # Add the patch to the Axes
            ax.add_patch(rect)
            plt.text(
                upper_left_x * width,
                upper_left_y * height,
                s=class_labels[int(class_pred)],
                color="white",
                verticalalignment="top",
                bbox={"color": colors[int(class_pred)], "pad": 0},
            )        
        
        plt.axis('off')
            
        fig.canvas.draw()
        
        fig_img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
        fig_img = fig_img.reshape(fig.canvas.get_width_height()[::-1] + (3,))

        plt.close(fig)
                
        outputs_inference_bb = fig_img
            
        ### GradCAM
        
        target_layer = [model.layers[-2]]
        cam = gcf.BaseCAM(model, target_layer)
        
        AnG = ActivationsAndGradients(model, target_layer, None)
        outputs = AnG(transform_img)
        
        bboxes = [[] for _ in range(1)]
        for i in range(3):
            batch_size, A, S, _, _ = outputs[i].shape
            anchor = config.SCALED_ANCHORS[i]
            boxes_scale_i = utils.cells_to_bboxes(
                outputs[i], anchor, S=S, is_preds=True
            )
            for idx, (box) in enumerate(boxes_scale_i):
                bboxes[idx] += box
        
        nms_boxes = utils.non_max_suppression(
            bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint",
        )

        target_categories = [box[0] for box in nms_boxes]
        targets = [ClassifierOutputTarget(
            category) for category in target_categories]
        
        help_ = cam.compute_cam_per_layer(transform_img, targets, False)
        
        output_gc = cam.aggregate_multi_layers(help_)[0, :, :]
        
        img = cv2.resize(input_img, (416, 416))
        img = np.float32(img) / 255
        cam_image = show_cam_on_image(img, output_gc, use_rgb=True, image_weight=gc_trans)   
             
        outputs_inference_gc = cam_image
        
    else: 
        outputs_inference_bb = None 
        outputs_inference_gc = None 

    return outputs_inference_bb, outputs_inference_gc



title = "PASCAL VOC trained on Yolov3"
description = "A simple Gradio interface to infer on Yolov3 model, and get GradCAM results. PASCAL VOC has the following object classes: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tvmonitor"
examples = [['examples/test_'+str(i)+'.jpg', 0.6, 0.5, 0.3] for i in range(10)]

demo = gr.Interface(inference,
                    inputs = [gr.Image(label="Input image"),
                                gr.Slider(0, 1, value=0.6, label="IOU Threshold"),
                                gr.Slider(0, 1, value=0.4, label="Threshold"),
                                gr.Slider(0, 1, value=0.5, label="GradCAM Transparency"),
                              ],
                    outputs = [
                        gr.Image(label="Yolov3 Prediction"),
                        gr.Image(label="GradCAM Output"),],
                    title = title,
                    description = description,
                    examples = examples
                    )
demo.launch()