Spaces:
Running
Running
| import torch | |
| from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineVQAFMModel, ElasticDNN_OfflineVQAMDModel | |
| from new_impl.cv.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg | |
| from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil | |
| from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
| from blip import FMLoRA_blip_Util | |
| from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
| from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module | |
| from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
| from data import build_scenario | |
| from utils.common.log import logger | |
| import torch.nn.functional as F | |
| import sys | |
| class ElasticDNN_blip_OfflineVQAFMModel(ElasticDNN_OfflineVQAFMModel): | |
| def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): | |
| # return FM_to_MD_ViT_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], | |
| # reducing_width_ratio, samples) | |
| raise NotImplementedError | |
| def get_feature_hook(self) -> LayerActivation: | |
| return LayerActivation(get_module(self.models_dict['main'], 'text_decoder.cls.predictions.decoder'), True, self.device) | |
| def get_elastic_dnn_util(self) -> ElasticDNNUtil: | |
| raise NotImplementedError | |
| def forward_to_get_task_loss(self, x, y, *args, **kwargs): | |
| self.to_train_mode() | |
| # print(x['input_ids'].size(), x['pixel_values'].size(), ) | |
| #o = self.infer(x) | |
| o = self.models_dict['main'](**y) | |
| # print(o.size(), y.size(), o, y) | |
| #return F.cross_entropy(o,y) | |
| #return F.binary_cross_entropy_with_logits(o, y) * y.shape[1] | |
| return o.loss | |
| def get_lora_util(self) -> FMLoRA_Util: | |
| return FMLoRA_blip_Util() | |
| def get_task_head_params(self): | |
| head = get_module(self.models_dict['main'], 'text_decoder.cls.predictions.decoder') | |
| params_name = {k for k, v in head.named_parameters()} | |
| logger.info(f'task head params: {params_name}') | |
| return list(head.parameters()) | |
| class ElasticDNN_blip_OfflineVQAMDModel(ElasticDNN_OfflineVQAMDModel): | |
| def get_feature_hook(self) -> LayerActivation: | |
| return LayerActivation(get_module(self.models_dict['main'], 'text_decoder.cls.predictions.decoder'), True, self.device) | |
| def forward_to_get_task_loss(self, x, y, *args, **kwargs): | |
| self.to_train_mode() | |
| o = self.infer(x) | |
| return F.binary_cross_entropy_with_logits(o, y) * y.shape[1] | |
| if __name__ == '__main__': | |
| from utils.dl.common.env import set_random_seed | |
| set_random_seed(1) | |
| scenario = build_scenario( | |
| source_datasets_name=['VQA_split1'], | |
| target_datasets_order=['VQA_split1_c'] * 1, # TODO | |
| da_mode='close_set', | |
| data_dirs={ | |
| 'VQA_split1': '/data/zql/datasets/vqav2', | |
| 'VQA_split1_c': '/data/zql/datasets/vqav2' | |
| }, | |
| ) | |
| # 2. init model | |
| torch.cuda.set_device(1) | |
| device = 'cuda' | |
| from transformers import BlipForQuestionAnswering | |
| from blip import blip | |
| model = blip(scenario.num_classes) | |
| fm_models_dict_path = save_models_dict_for_init({ | |
| 'main': model | |
| }, __file__, 'fm_blip') | |
| fm_model = ElasticDNN_blip_OfflineVQAFMModel('fm', fm_models_dict_path, device) | |
| # 3. init alg | |
| models = { | |
| 'fm': fm_model | |
| } | |
| fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, sys.argv[0])) | |
| sample_dataset = list(scenario.get_offline_datasets().values())[0]['train'] | |
| sample = sample_dataset[0][0] | |
| for k, v in sample.items(): | |
| sample[k] = v.unsqueeze(0) | |
| # 4. run alg | |
| from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup | |
| fm_lora_alg.run(scenario, hyps={ | |
| 'launch_tbboard': False, | |
| 'samples_size': sample, | |
| 'ab_r':8 , | |
| 'train_batch_size': 64, | |
| 'val_batch_size': 512, | |
| 'num_workers': 16, | |
| 'optimizer': 'AdamW', | |
| 'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999]}, | |
| 'scheduler': 'LambdaLR', | |
| 'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 310000)}, | |
| 'num_iters': 320000, | |
| 'val_freq': 400, | |
| # 'fm_lora_ckpt_path': 'experiments/elasticdnn/vit_b_16/offline/fm_lora/cls/results/cls.py/20230607/999995-234355-TokenClsial/models/fm_best.pt' | |
| }) |