Spaces:
Running
Running
| from copy import deepcopy | |
| from typing import Optional, Union | |
| import torch | |
| from torch import nn | |
| from einops import rearrange, repeat | |
| from einops.layers.torch import Rearrange | |
| import tqdm | |
| from utils.dl.common.model import get_model_device, get_model_size, set_module, get_module | |
| from .base import Abs, KTakesAll, ElasticDNNUtil, Layer_WrappedWithFBS | |
| from utils.common.log import logger | |
| class SqueezeLast(nn.Module): | |
| def __init__(self): | |
| super(SqueezeLast, self).__init__() | |
| def forward(self, x): | |
| return x.squeeze(-1) | |
| class ProjConv_WrappedWithFBS(Layer_WrappedWithFBS): | |
| def __init__(self, proj: nn.Conv2d, r): | |
| super(ProjConv_WrappedWithFBS, self).__init__() | |
| self.proj = proj | |
| # for conv: (B, C_in, H, W) -> (B, C_in) -> (B, C_out) | |
| # for mlp in ViT: (B, #patches, D: dim of patches embedding) -> (B, D) -> (B, C_out) | |
| self.fbs = nn.Sequential( | |
| Abs(), | |
| nn.AdaptiveAvgPool1d(1), | |
| SqueezeLast(), | |
| nn.Linear(proj.in_channels, proj.out_channels // r), | |
| nn.ReLU(), | |
| nn.Linear(proj.out_channels // r, proj.out_channels), | |
| nn.ReLU() | |
| ) | |
| nn.init.constant_(self.fbs[6].bias, 1.) | |
| nn.init.kaiming_normal_(self.fbs[6].weight) | |
| def forward(self, x): | |
| if self.use_cached_channel_attention and self.cached_channel_attention is not None: | |
| channel_attention = self.cached_channel_attention | |
| else: | |
| self.cached_raw_channel_attention = self.fbs(x) | |
| self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention) | |
| channel_attention = self.cached_channel_attention | |
| raw_res = self.proj(x) | |
| return channel_attention.unsqueeze(1) * raw_res # TODO: | |
| class Linear_WrappedWithFBS(Layer_WrappedWithFBS): | |
| def __init__(self, linear: nn.Linear, r): | |
| super(Linear_WrappedWithFBS, self).__init__() | |
| self.linear = linear | |
| # for conv: (B, C_in, H, W) -> (B, C_in) -> (B, C_out) | |
| # for mlp in ViT: (B, #patches, D: dim of patches embedding) -> (B, D) -> (B, C_out) | |
| self.fbs = nn.Sequential( | |
| Rearrange('b n d -> b d n'), | |
| Abs(), | |
| nn.AdaptiveAvgPool1d(1), | |
| SqueezeLast(), | |
| nn.Linear(linear.in_features, linear.out_features // r), | |
| nn.ReLU(), | |
| nn.Linear(linear.out_features // r, linear.out_features), | |
| nn.ReLU() | |
| ) | |
| nn.init.constant_(self.fbs[6].bias, 1.) | |
| nn.init.kaiming_normal_(self.fbs[6].weight) | |
| def forward(self, x): | |
| if self.use_cached_channel_attention and self.cached_channel_attention is not None: | |
| channel_attention = self.cached_channel_attention | |
| else: | |
| self.cached_raw_channel_attention = self.fbs(x) | |
| self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention) | |
| channel_attention = self.cached_channel_attention | |
| raw_res = self.linear(x) | |
| return channel_attention.unsqueeze(1) * raw_res | |
| class ToQKV_WrappedWithFBS(Layer_WrappedWithFBS): | |
| """ | |
| This regards to_q/to_k/to_v as a whole (in fact it consists of multiple heads) and prunes it. | |
| It seems different channels of different heads are pruned according to the input. | |
| This is different from "removing some head" or "removing the same channels in each head". | |
| """ | |
| def __init__(self, to_qkv: nn.Linear, r): | |
| super(ToQKV_WrappedWithFBS, self).__init__() | |
| # self.to_qkv = to_qkv | |
| self.to_qk = nn.Linear(to_qkv.in_features, to_qkv.out_features // 3 * 2, bias=to_qkv.bias is not None) | |
| self.to_v = nn.Linear(to_qkv.in_features, to_qkv.out_features // 3, bias=to_qkv.bias is not None) | |
| self.to_qk.weight.data.copy_(to_qkv.weight.data[0: to_qkv.out_features // 3 * 2]) | |
| if to_qkv.bias is not None: | |
| self.to_qk.bias.data.copy_(to_qkv.bias.data[0: to_qkv.out_features // 3 * 2]) | |
| self.to_v.weight.data.copy_(to_qkv.weight.data[to_qkv.out_features // 3 * 2: ]) | |
| if to_qkv.bias is not None: | |
| self.to_v.bias.data.copy_(to_qkv.bias.data[to_qkv.out_features // 3 * 2: ]) | |
| self.fbs = nn.Sequential( | |
| Rearrange('b n d -> b d n'), | |
| Abs(), | |
| nn.AdaptiveAvgPool1d(1), | |
| SqueezeLast(), | |
| nn.Linear(to_qkv.in_features, to_qkv.out_features // 3 // r), | |
| nn.ReLU(), | |
| # nn.Linear(to_qkv.out_features // 3 // r, to_qkv.out_features // 3), | |
| nn.Linear(to_qkv.out_features // 3 // r, self.to_v.out_features), | |
| nn.ReLU() | |
| ) | |
| nn.init.constant_(self.fbs[6].bias, 1.) | |
| nn.init.kaiming_normal_(self.fbs[6].weight) | |
| def forward(self, x): | |
| if self.use_cached_channel_attention and self.cached_channel_attention is not None: | |
| channel_attention = self.cached_channel_attention | |
| else: | |
| self.cached_raw_channel_attention = self.fbs(x) | |
| # print() | |
| # for attn in self.cached_raw_channel_attention.chunk(3, dim=1)[0: 1]: | |
| # print(self.cached_raw_channel_attention.size(), attn.size()) | |
| # print(self.k_takes_all.k) | |
| # print(attn[0].nonzero(as_tuple=True)[0].size(), attn[0]) | |
| self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention) | |
| # for attn in self.cached_channel_attention.chunk(3, dim=1)[0: 1]: | |
| # print(self.cached_channel_attention.size(), attn.size()) | |
| # print(self.k_takes_all.k) | |
| # print(attn[0].nonzero(as_tuple=True)[0].size(), attn[0]) | |
| # print() | |
| channel_attention = self.cached_channel_attention | |
| qk = self.to_qk(x) | |
| v = channel_attention.unsqueeze(1) * self.to_v(x) | |
| return torch.cat([qk, v], dim=-1) | |
| # qkv = raw_res.chunk(3, dim = -1) | |
| # raw_v = qkv[2] | |
| # print('raw_k, raw_v', qkv[0].sum((0, 1))[0: 10], qkv[0].sum((0, 1)).nonzero(as_tuple=True)[0].size(), | |
| # qkv[1].sum((0, 1))[0: 10], qkv[1].sum((0, 1)).nonzero(as_tuple=True)[0].size(),) | |
| # print('raw_v', raw_v.size(), raw_v.sum((0, 1))[0: 10], raw_v.sum((0, 1)).nonzero(as_tuple=True)[0].size()) | |
| # qkv_attn = channel_attention.chunk(3, dim=-1) | |
| # print('attn', [attn[0][0: 10] for attn in qkv_attn]) | |
| # print(channel_attention.unsqueeze(1).size(), raw_res.size()) | |
| # print('fbs', channel_attention.size(), raw_res.size()) | |
| # return channel_attention.unsqueeze(1) * raw_res | |
| class StaticFBS(nn.Module): | |
| def __init__(self, static_channel_attention): | |
| super(StaticFBS, self).__init__() | |
| assert static_channel_attention.dim() == 2 and static_channel_attention.size(0) == 1 | |
| self.static_channel_attention = nn.Parameter(static_channel_attention, requires_grad=False) # (1, dim) | |
| def forward(self, x): | |
| # print('staticfbs', x, self.static_channel_attention.unsqueeze(1)) | |
| return x * self.static_channel_attention.unsqueeze(1) | |
| class ElasticBertUtil(ElasticDNNUtil): | |
| def convert_raw_dnn_to_master_dnn(self, raw_dnn: nn.Module, r: float, ignore_layers=[]): | |
| assert len(ignore_layers) == 0, 'not supported yet' | |
| raw_vit = deepcopy(raw_dnn) | |
| # set_module(module, 'patch_embed.proj', ProjConv_WrappedWithFBS(module.patch_embed.proj, r)) | |
| for name, module in raw_vit.named_modules(): | |
| # if name.endswith('attn'): | |
| # set_module(module, 'qkv', ToQKV_WrappedWithFBS(module.qkv, r)) | |
| if name.endswith('intermediate'): | |
| set_module(module, 'dense', Linear_WrappedWithFBS(module.dense, r)) | |
| return raw_vit | |
| def set_master_dnn_sparsity(self, master_dnn: nn.Module, sparsity: float): | |
| # for name, module in master_dnn.named_modules(): | |
| # if not name.endswith('attn'): | |
| # continue | |
| # q_features = module.qkv.to_qk.out_features // 2 | |
| # if (q_features - int(q_features * sparsity)) % module.num_heads != 0: | |
| # # tune sparsity to ensure #unpruned channel % num_heads == 0 | |
| # # so that the pruning seems to reduce the dim_head of each head | |
| # tuned_sparsity = 1. - int((q_features - int(q_features * sparsity)) / module.num_heads) * module.num_heads / q_features | |
| # logger.debug(f'tune sparsity from {sparsity:.2f} to {tuned_sparsity}') | |
| # sparsity = tuned_sparsity | |
| # break | |
| return super().set_master_dnn_sparsity(master_dnn, sparsity) | |
| def select_most_rep_sample(self, master_dnn: nn.Module, samples: torch.Tensor): | |
| # print(samples) | |
| # return samples[0].unsqueeze(0) | |
| res = {k: v[0: 1] for k, v in samples.items()} | |
| return res | |
| def extract_surrogate_dnn_via_samples(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False): | |
| sample = self.select_most_rep_sample(master_dnn, samples) | |
| # assert sample.dim() == 4 and sample.size(0) == 1 | |
| # print('before') | |
| master_dnn.eval() | |
| self.clear_cached_channel_attention_in_master_dnn(master_dnn) | |
| with torch.no_grad(): | |
| master_dnn_output = master_dnn(**sample) | |
| # print('after') | |
| boosted_vit = deepcopy(master_dnn) | |
| def get_unpruned_indexes_from_channel_attn(channel_attn: torch.Tensor, k): | |
| assert channel_attn.size(0) == 1, 'use A representative sample to generate channel attentions' | |
| # print('attn_in_unpruned', channel_attn[0][0: 10]) | |
| res = channel_attn[0].nonzero(as_tuple=True)[0] # should be one-dim | |
| # res = channel_attn[0].argsort(descending=True)[0: -int(channel_attn.size(1) * k)].sort()[0] | |
| # g = channel_attn | |
| # k = g.size(1) - int(g.size(1) * k) | |
| # res = g.topk(k, 1)[1][0].sort()[0] | |
| return res | |
| unpruned_indexes_of_layers = {} | |
| # for attn, ff in boosted_vit.transformer.layers: | |
| # for block_i, block in enumerate(boosted_vit.blocks): | |
| for block_i, block in enumerate(boosted_vit.bert.encoder.layer): | |
| # attn = block.attn | |
| # ff = block.mlp | |
| ff_0 = get_module(block, f'intermediate.dense') | |
| # ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k) | |
| ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0] | |
| ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes]) | |
| new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None) | |
| new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes]) | |
| if ff_0.linear.bias is not None: | |
| new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes]) | |
| set_module(block, 'intermediate.dense', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes]))) | |
| ff_1 = get_module(block, f'output.dense') | |
| new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None) | |
| new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes]) | |
| if ff_1.bias is not None: | |
| new_ff_1.bias.data.copy_(ff_1.bias.data) | |
| set_module(block, 'output.dense', new_ff_1) | |
| unpruned_indexes_of_layers[f'bert.encoder.layer.{block_i}.intermediate.dense.0.weight'] = ff_0_unpruned_indexes | |
| surrogate_dnn = boosted_vit | |
| surrogate_dnn.eval() | |
| surrogate_dnn = surrogate_dnn.to(get_model_device(master_dnn)) | |
| # logger.debug(surrogate_dnn) | |
| with torch.no_grad(): | |
| surrogate_dnn_output = surrogate_dnn(**sample) | |
| output_diff = ((surrogate_dnn_output - master_dnn_output) ** 2).sum() | |
| # assert output_diff < 1e-4, output_diff | |
| logger.info(f'output diff of master and surrogate DNN: {output_diff}') | |
| logger.debug(f'example output of master/surrogate: {master_dnn_output.sum(0)[0: 10]}, {surrogate_dnn_output.sum(0)[0: 10]}') | |
| # logger.info(f'\nonly prune mlp!!!!\n') | |
| # logger.info(f'\nonly prune mlp!!!!\n') | |
| if return_detail: | |
| return boosted_vit, unpruned_indexes_of_layers | |
| return boosted_vit | |
| def extract_surrogate_dnn_via_samples_with_perf_test(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False): | |
| master_dnn_size = get_model_size(master_dnn, True) | |
| master_dnn_latency = self._get_model_latency(master_dnn, samples, 50, | |
| get_model_device(master_dnn), 50, False) | |
| res = self.extract_surrogate_dnn_via_samples(master_dnn, samples, return_detail) | |
| if not return_detail: | |
| surrogate_dnn = res | |
| else: | |
| surrogate_dnn, unpruned_indexes_of_layers = res | |
| surrogate_dnn_size = get_model_size(surrogate_dnn, True) | |
| surrogate_dnn_latency = self._get_model_latency(master_dnn, samples, 50, | |
| get_model_device(master_dnn), 50, False) | |
| logger.info(f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample) -> ' | |
| f'surrogate DNN ({surrogate_dnn_size:.3f}MB, {surrogate_dnn_latency:.4f}s/sample)\n' | |
| f'(model size: ↓ {(master_dnn_size / surrogate_dnn_size):.2f}x, ' | |
| f'latency: ↓ {(master_dnn_latency / surrogate_dnn_latency):.2f}x)') | |
| return res | |
| def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int, | |
| device: str, warmup_sample_num: int, return_detail=False): | |
| import time | |
| if isinstance(model_input_size, tuple): | |
| dummy_input = torch.rand(model_input_size).to(device) | |
| else: | |
| dummy_input = model_input_size | |
| model = model.to(device) | |
| model.eval() | |
| # warm up | |
| with torch.no_grad(): | |
| for _ in range(warmup_sample_num): | |
| model(**dummy_input) | |
| infer_time_list = [] | |
| if device == 'cuda' or 'cuda' in str(device): | |
| with torch.no_grad(): | |
| for _ in range(sample_num): | |
| s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) | |
| s.record() | |
| model(**dummy_input) | |
| e.record() | |
| torch.cuda.synchronize() | |
| cur_model_infer_time = s.elapsed_time(e) / 1000. | |
| infer_time_list += [cur_model_infer_time] | |
| else: | |
| with torch.no_grad(): | |
| for _ in range(sample_num): | |
| start = time.time() | |
| model(**dummy_input) | |
| cur_model_infer_time = time.time() - start | |
| infer_time_list += [cur_model_infer_time] | |
| avg_infer_time = sum(infer_time_list) / sample_num | |
| if return_detail: | |
| return avg_infer_time, infer_time_list | |
| return avg_infer_time |