File size: 21,073 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
import enum
import time
from typing import List, Tuple, Type
import torch
import warnings
import os
import thop

from ...common.others import get_cur_time_str


class ModelSaveMethod(enum.Enum):
    """
    - WEIGHT: save model by `torch.save(model.state_dict(), ...)`
    - FULL: save model by `torch.save(model, ...)`
    - JIT: convert model to JIT format and save it by `torch.jit.save(jit_model, ...)`
    """
    WEIGHT = 0
    FULL = 1
    JIT = 2
    

def save_model(model: torch.nn.Module,
               model_file_path: str,
               save_method: ModelSaveMethod,
               model_input_size: Tuple[int]=None):
    """Save a PyTorch model.

    Args:
        model (torch.nn.Module): A PyTorch model.
        model_file_path (str): Target model file path.
        save_method (ModelSaveMethod): The method to save model.
        model_input_size (Tuple[int], optional): \
            This is required if :attr:`save_method` is :attr:`ModelSaveMethod.JIT`. \
            Typically be `(1, 3, 32, 32)` or `(1, 3, 224, 224)`. \
            Defaults to None.
    """
    
    model.eval()
    if save_method == ModelSaveMethod.WEIGHT:
        torch.save(model.state_dict(), model_file_path)

    elif save_method == ModelSaveMethod.FULL:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            torch.save(model, model_file_path)

    elif save_method == ModelSaveMethod.JIT:
        assert model_input_size is not None
        dummy_input = torch.ones(model_input_size, device=get_model_device(model))
        new_model = torch.jit.trace(model, dummy_input, check_trace=False)
        torch.jit.save(new_model, model_file_path)
        

def get_model_size(model: torch.nn.Module, return_MB=False):
    """Get size of a PyTorch model (default in Byte).

    Args:
        model (torch.nn.Module): A PyTorch model.
        return_MB (bool, optional): Return result in MB (/= 1024**2). Defaults to False.

    Returns:
        int: Model size.
    """
    pid = os.getpid()
    tmp_model_file_path = './tmp-get-model-size-{}-{}.model'.format(pid, get_cur_time_str())
    save_model(model, tmp_model_file_path, ModelSaveMethod.WEIGHT)

    model_size = os.path.getsize(tmp_model_file_path)
    os.remove(tmp_model_file_path)
    
    if return_MB:
        model_size /= 1024**2

    return model_size


def get_model_device(model: torch.nn.Module):
    """Get device of a PyTorch model.

    Args:
        model (torch.nn.Module): A PyTorch model.

    Returns:
        str: The device of :attr:`model` ('cpu' or 'cuda:x').
    """
    return list(model.parameters())[0].device


def get_model_latency(model: torch.nn.Module, model_input_size: Tuple[int], sample_num: int, 
                      device: str, warmup_sample_num: int, return_detail=False):
    """Get the latency (inference time) of a PyTorch model.
    
    Reference: https://deci.ai/resources/blog/measure-inference-time-deep-neural-networks/

    Args:
        model (torch.nn.Module): A PyTorch model.
        model_input_size (Tuple[int]): Typically be `(1, 3, 32, 32)` or `(1, 3, 224, 224)`.
        sample_num (int): How many inputs which size is :attr:`model_input_size` will be tested and compute the average latency as result.
        device (str): Typically be 'cpu' or 'cuda'.
        warmup_sample_num (int): Let model perform some dummy inference to warm up the test environment to avoid measurement loss.
        return_detail (bool, optional): Beside the average latency, return all result measured. Defaults to False.

    Returns:
        Union[float, Tuple[float, List[float]]]: The average latency (and all lantecy data) of :attr:`model`.
    """
    if isinstance(model_input_size, tuple):
        dummy_input = torch.rand(model_input_size).to(device)
    else:
        dummy_input = model_input_size
        
    model = model.to(device)
    model.eval()
    
    # warm up
    with torch.no_grad():
        for _ in range(warmup_sample_num):
            model(dummy_input)
            
    infer_time_list = []
            
    if device == 'cuda' or 'cuda' in str(device):
        with torch.no_grad():
            for _ in range(sample_num):
                s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
                s.record()
                model(dummy_input)
                e.record()
                torch.cuda.synchronize()
                cur_model_infer_time = s.elapsed_time(e) / 1000.
                infer_time_list += [cur_model_infer_time]

    else:
        with torch.no_grad():
            for _ in range(sample_num):
                start = time.time()
                model(dummy_input)
                cur_model_infer_time = time.time() - start
                infer_time_list += [cur_model_infer_time]
                
    avg_infer_time = sum(infer_time_list) / sample_num

    if return_detail:
        return avg_infer_time, infer_time_list
    return avg_infer_time


def get_model_flops_and_params(model: torch.nn.Module, model_input_size: Tuple[int], return_M=False):
    """Get FLOPs and number of parameters of a PyTorch model.

    Args:
        model (torch.nn.Module): A PyTorch model.
        model_input_size (Tuple[int]): Typically be `(1, 3, 32, 32)` or `(1, 3, 224, 224)`.

    Returns:
        Tuple[float, float]: FLOPs and number of parameters of :attr:`model`.
    """
    device = get_model_device(model)
    ops, param = thop.profile(model, (torch.ones(model_input_size).to(device), ), verbose=False)
    ops, param = ops * 2, param
    if return_M:
        ops, param = ops / 1e6, param / 1e6
    return ops, param


def get_module(model: torch.nn.Module, module_name: str):
    """Get a module from a PyTorch model.
    
    Example:
        >>> from torchvision.models import resnet18
        >>> model = resnet18()
        >>> get_module(model, 'layer1.0')
        BasicBlock(
            (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
            (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )

    Args:
        model (torch.nn.Module): A PyTorch model.
        module_name (str): Module name.

    Returns:
        torch.nn.Module: Corrsponding module.
    """
    for name, module in model.named_modules():
        if name == module_name:
            return module

    return None


def get_parameter(model: torch.nn.Module, param_name: str):
    return getattr(
        get_module(model, '.'.join(param_name.split('.')[0: -1])),
        param_name.split('.')[-1]
    )


def get_super_module(model: torch.nn.Module, module_name: str):
    """Get the super module of a module in a PyTorch model.
    
    Example:
        >>> from torchvision.models import resnet18
        >>> model = resnet18()
        >>> get_super_module(model, 'layer1.0.conv1')
        BasicBlock(
            (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
            (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )

    Args:
        model (torch.nn.Module): A PyTorch model.
        module_name (str): Module name.

    Returns:
        torch.nn.Module: Super module of module :attr:`module_name`.
    """
    super_module_name = '.'.join(module_name.split('.')[0:-1])
    return get_module(model, super_module_name)


def set_module(model: torch.nn.Module, module_name: str, module: torch.nn.Module):
    """Set module in a PyTorch model.
    
    Example:
        >>> from torchvision.models import resnet18
        >>> model = resnet18()
        >>> set_module(model, 'layer1.0', torch.nn.Conv2d(64, 64, 3))
        >>> model
        ResNet(
            (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
            (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu): ReLU(inplace=True)
            (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
            (layer1): Sequential(
            --> (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (1): BasicBlock(
                    ...
                )
                ...
            )
            ...
        )

    Args:
        model (torch.nn.Module): A PyTorch model.
        module_name (str): Module name.
        module (torch.nn.Module): Target module which will be set into :attr:`model`.
    """
    super_module = get_super_module(model, module_name)
    setattr(super_module, module_name.split('.')[-1], module)


def get_ith_layer(model: torch.nn.Module, i: int):
    """Get i-th layer in a PyTorch model.
    
    Example:
        >>> from torchvision.models import vgg16
        >>> model = vgg16()
        >>> get_ith_layer(model, 5)
        Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

    Args:
        model (torch.nn.Module): A PyTorch model.
        i (int): Index of target layer.

    Returns:
        torch.nn.Module: i-th layer in :attr:`model`.
    """
    j = 0
    for module in model.modules():
        if len(list(module.children())) > 0:
            continue
        if j == i:
            return module 
        j += 1
    return None


def get_ith_layer_name(model: torch.nn.Module, i: int):
    """Get the name of i-th layer in a PyTorch model.
    
    Example:
        >>> from torchvision.models import vgg16
        >>> model = vgg16()
        >>> get_ith_layer_name(model, 5)
        'features.5'

    Args:
        model (torch.nn.Module): A PyTorch model.
        i (int): Index of target layer.

    Returns:
        str: The name of i-th layer in :attr:`model`.
    """
    j = 0
    for name, module in model.named_modules():
        if len(list(module.children())) > 0:
            continue
        if j == i:
            return name
        j += 1
    return None


def set_ith_layer(model: torch.nn.Module, i: int, layer: torch.nn.Module):
    """Set i-th layer in a PyTorch model.
    
    Example:
        >>> from torchvision.models import vgg16
        >>> model = vgg16()
        >>> model
        VGG(
            (features): Sequential(
                (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (1): ReLU(inplace=True)
                (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                ...
            )
            ...
        )
        >>> set_ith_layer(model, 2, torch.nn.Conv2d(64, 128, 3))
        VGG(
            (features): Sequential(
                (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (1): ReLU(inplace=True)
            --> (2): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                ...
            )
            ...
        )

    Args:
        model (torch.nn.Module): A PyTorch model.
        i (int): Index of target layer.
        layer (torch.nn.Module): The layer which will be set into :attr:`model`.
    """
    j = 0
    for name, module in model.named_modules():
        if len(list(module.children())) > 0:
            continue
        if j == i:
            set_module(model, name, layer)
            return
        j += 1
        
    
def get_all_specific_type_layers_name(model: torch.nn.Module, types: Tuple[Type[torch.nn.Module]]):
    """Get names of all layers which are give types in a PyTorch model. (e.g. `Conv2d`, `Linear`)
    
    Example:
        >>> from torchvision.models import vgg16
        >>> model = vgg16()
        >>> get_all_specific_type_layers_name(model, (torch.nn.Conv2d))
        ['features.0', 'features.2', 'features.5', ...]

    Args:
        model (torch.nn.Module): A PyTorch model.
        types (Tuple[Type[torch.nn.Module]]): Target types, e.g. `(e.g. torch.nn.Conv2d, torch.nn.Linear)`

    Returns:
        List[str]: Names of all layers which are give types.
    """
    res = []
    for name, m in model.named_modules():
        if isinstance(m, types):
            res += [name]
    return res


class LayerActivation:
    """Collect the input and output of a middle module of a PyTorch model during inference.
    
    Layer is a wide concept in this class. A module (e.g. ResBlock in ResNet) can be also regarded as a "layer".
    
    Example:
        >>> from torchvision.models import vgg16
        >>> model = vgg16()
        >>> # collect the input and output of 5th layer in VGG16
        >>> layer_activation = LayerActivation(get_ith_layer(model, 5), 'cuda')
        >>> model(torch.rand((1, 3, 224, 224)))
        >>> layer_activation.input
        tensor([[...]])
        >>> layer_activation.output
        tensor([[...]])
        >>> layer_activation.remove()
    """
    def __init__(self, layer: torch.nn.Module, detach: bool, device: str):
        """Register forward hook on corresponding layer.

        Args:
            layer (torch.nn.Module): Target layer.
            device (str): Where the collected data is located.
        """
        self.hook = layer.register_forward_hook(self._hook_fn)
        self.detach = detach
        self.device = device
        self.input: torch.Tensor = None
        self.output: torch.Tensor = None
        self.layer = layer
        
    def __str__(self):
        return '- ' + str(self.layer)

    def _hook_fn(self, module, input, output):
        # TODO: input or output may be a tuple
        if isinstance(input, tuple):
            self.input = input[0].to(self.device)
        else:
            self.input = input.to(self.device)

        if isinstance(output, tuple):
            self.output = output[0].to(self.device)
        else:
            self.output = output.to(self.device)
            
        if self.detach:
            self.input = self.input.detach()
            self.output = self.output.detach()

    def remove(self):
        """Remove the hook in the model to avoid performance effect.
        Use this after using the collected data.
        """
        self.hook.remove()
        
        
class LayerActivation2:
    """Collect the input and output of a middle module of a PyTorch model during inference.
    
    Layer is a wide concept in this class. A module (e.g. ResBlock in ResNet) can be also regarded as a "layer".
    
    Example:
        >>> from torchvision.models import vgg16
        >>> model = vgg16()
        >>> # collect the input and output of 5th layer in VGG16
        >>> layer_activation = LayerActivation(get_ith_layer(model, 5), 'cuda')
        >>> model(torch.rand((1, 3, 224, 224)))
        >>> layer_activation.input
        tensor([[...]])
        >>> layer_activation.output
        tensor([[...]])
        >>> layer_activation.remove()
    """
    def __init__(self, layer: torch.nn.Module):
        """Register forward hook on corresponding layer.

        Args:
            layer (torch.nn.Module): Target layer.
            device (str): Where the collected data is located.
        """
        assert layer is not None
        
        self.hook = layer.register_forward_hook(self._hook_fn)
        self.input: torch.Tensor = None
        self.output: torch.Tensor = None
        self.layer = layer
        
    def __str__(self):
        return '- ' + str(self.layer)

    def _hook_fn(self, module, input, output):
        self.input = input
        self.output = output

    def remove(self):
        """Remove the hook in the model to avoid performance effect.
        Use this after using the collected data.
        """
        self.hook.remove()

class LayerActivation3:
    """Collect the input and output of a middle module of a PyTorch model during inference.
    
    Layer is a wide concept in this class. A module (e.g. ResBlock in ResNet) can be also regarded as a "layer".
    
    Example:
        >>> from torchvision.models import vgg16
        >>> model = vgg16()
        >>> # collect the input and output of 5th layer in VGG16
        >>> layer_activation = LayerActivation(get_ith_layer(model, 5), 'cuda')
        >>> model(torch.rand((1, 3, 224, 224)))
        >>> layer_activation.input
        tensor([[...]])
        >>> layer_activation.output
        tensor([[...]])
        >>> layer_activation.remove()
    """
    def __init__(self, layer: torch.nn.Module, detach: bool, device: str):
        """Register forward hook on corresponding layer.

        Args:
            layer (torch.nn.Module): Target layer.
            device (str): Where the collected data is located.
        """
        self.hook = layer.register_forward_hook(self._hook_fn)
        self.detach = detach
        self.device = device
        self.input: torch.Tensor = None
        self.output: torch.Tensor = None
        self.layer = layer
        
    def __str__(self):
        return '- ' + str(self.layer)

    def _hook_fn(self, module, input, output):
        # TODO: input or output may be a tuple
        self.input = input
        self.output = output

        # if self.detach:
        #     self.input = self.input.detach()
            # self.output = self.output.detach()

    def remove(self):
        """Remove the hook in the model to avoid performance effect.
        Use this after using the collected data.
        """
        self.hook.remove()     

class LayerActivationWrapper:
    """A wrapper of :attr:`LayerActivation` which has the same API, but broaden the concept "layer".
    Now a series of layers can be regarded as "hyper-layer" in this class.
    
    Example:
        >>> from torchvision.models import vgg16
        >>> model = vgg16()
        >>> # collect the input of 5th layer, and output of 7th layer in VGG16
        >>> # i.e. regard 5th~7th layer as a whole module, 
        >>> # and collect the input and output of this module
        >>> layer_activation = LayerActivationWrapper([
            LayerActivation(get_ith_layer(model, 5), 'cuda'),
            LayerActivation(get_ith_layer(model, 6), 'cuda')
            LayerActivation(get_ith_layer(model, 7), 'cuda')
        ])
        >>> model(torch.rand((1, 3, 224, 224)))
        >>> layer_activation.input
        tensor([[...]])
        >>> layer_activation.output
        tensor([[...]])
        >>> layer_activation.remove()
    """
    def __init__(self, las: List[LayerActivation]):
        """
        Args:
            las (List[LayerActivation]): The layer activations of a series of layers.
        """
        self.las = las
        
    def __str__(self):
        return '\n'.join([str(la) for la in self.las])

    @property
    def input(self):
        """Get the collected input data of first layer.

        Returns:
            torch.Tensor: Collected input data of first layer.
        """
        return self.las[0].input

    @property
    def output(self):
        """Get the collected input data of last layer.

        Returns:
            torch.Tensor: Collected input data of last layer.
        """
        return self.las[-1].output

    def remove(self):
        """Remove all hooks in the model to avoid performance effect.
        Use this after using the collected data.
        """
        [la.remove() for la in self.las]


class TimeProfiler:
    """ (NOT VERIFIED. DON'T USE ME)
    """
    def __init__(self, layer: torch.nn, device):
        self.before_infer_hook = layer.register_forward_pre_hook(self.before_hook_fn)
        self.after_infer_hook = layer.register_forward_hook(self.after_hook_fn)

        self.device = device
        self.infer_time = None
        self._start_time = None
        
        if self.device != 'cpu':
            self.s, self.e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)

    def before_hook_fn(self, module, input):
        if self.device == 'cpu':
            self._start_time = time.time()
        else:
            self.s.record()

    def after_hook_fn(self, module, input, output):
        if self.device == 'cpu':
            self.infer_time = time.time() - self._start_time
        else:
            self.e.record()
            torch.cuda.synchronize()
            self.infer_time = self.s.elapsed_time(self.e) / 1000.

    def remove(self):
        self.before_infer_hook.remove()
        self.after_infer_hook.remove()


class TimeProfilerWrapper:
    """ (NOT VERIFIED. DON'T USE ME)
    """
    def __init__(self, tps: List[TimeProfiler]):
        self.tps = tps

    @property
    def infer_time(self):
        return sum([tp.infer_time for tp in self.tps])

    def remove(self):
        [tp.remove() for tp in self.tps]