Spaces:
Running
on
Zero
Running
on
Zero
lixiang46
commited on
Commit
•
66fd925
1
Parent(s):
7132521
init faceid
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- README.md +3 -3
- annotator/canny/__init__.py +0 -6
- annotator/midas/LICENSE +0 -21
- annotator/midas/__init__.py +0 -35
- annotator/midas/api.py +0 -169
- annotator/midas/midas/__init__.py +0 -0
- annotator/midas/midas/base_model.py +0 -16
- annotator/midas/midas/blocks.py +0 -342
- annotator/midas/midas/dpt_depth.py +0 -109
- annotator/midas/midas/midas_net.py +0 -76
- annotator/midas/midas/midas_net_custom.py +0 -128
- annotator/midas/midas/transforms.py +0 -234
- annotator/midas/midas/vit.py +0 -491
- annotator/midas/utils.py +0 -189
- annotator/util.py +0 -129
- app.py +84 -155
- assets/title.md +3 -3
- basicsr/__init__.py +0 -11
- basicsr/archs/__init__.py +0 -24
- basicsr/archs/arch_util.py +0 -313
- basicsr/archs/basicvsr_arch.py +0 -336
- basicsr/archs/basicvsrpp_arch.py +0 -417
- basicsr/archs/dfdnet_arch.py +0 -169
- basicsr/archs/dfdnet_util.py +0 -162
- basicsr/archs/discriminator_arch.py +0 -150
- basicsr/archs/duf_arch.py +0 -276
- basicsr/archs/ecbsr_arch.py +0 -275
- basicsr/archs/edsr_arch.py +0 -61
- basicsr/archs/edvr_arch.py +0 -382
- basicsr/archs/hifacegan_arch.py +0 -260
- basicsr/archs/hifacegan_util.py +0 -255
- basicsr/archs/inception.py +0 -307
- basicsr/archs/rcan_arch.py +0 -135
- basicsr/archs/ridnet_arch.py +0 -180
- basicsr/archs/rrdbnet_arch.py +0 -119
- basicsr/archs/spynet_arch.py +0 -96
- basicsr/archs/srresnet_arch.py +0 -65
- basicsr/archs/srvgg_arch.py +0 -70
- basicsr/archs/stylegan2_arch.py +0 -799
- basicsr/archs/stylegan2_bilinear_arch.py +0 -614
- basicsr/archs/swinir_arch.py +0 -956
- basicsr/archs/tof_arch.py +0 -172
- basicsr/archs/vgg_arch.py +0 -161
- basicsr/data/__init__.py +0 -101
- basicsr/data/data_sampler.py +0 -48
- basicsr/data/data_util.py +0 -315
- basicsr/data/degradations.py +0 -764
- basicsr/data/ffhq_dataset.py +0 -80
- basicsr/data/meta_info/meta_info_DIV2K800sub_GT.txt +0 -0
.gitattributes
CHANGED
@@ -37,3 +37,5 @@ image/bird.png filter=lfs diff=lfs merge=lfs -text
|
|
37 |
image/dog.png filter=lfs diff=lfs merge=lfs -text
|
38 |
image/woman_1.png filter=lfs diff=lfs merge=lfs -text
|
39 |
image/woman_2.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
37 |
image/dog.png filter=lfs diff=lfs merge=lfs -text
|
38 |
image/woman_1.png filter=lfs diff=lfs merge=lfs -text
|
39 |
image/woman_2.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
image/image1.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
image/image2.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title: Kolors-
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.38.1
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
+
title: Kolors-FaceID
|
3 |
+
emoji: 🥸
|
4 |
colorFrom: purple
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.38.1
|
8 |
app_file: app.py
|
annotator/canny/__init__.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
|
3 |
-
|
4 |
-
class CannyDetector:
|
5 |
-
def __call__(self, img, low_threshold, high_threshold):
|
6 |
-
return cv2.Canny(img, low_threshold, high_threshold)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/midas/LICENSE
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab)
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/midas/__init__.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
# Midas Depth Estimation
|
2 |
-
# From https://github.com/isl-org/MiDaS
|
3 |
-
# MIT LICENSE
|
4 |
-
|
5 |
-
import cv2
|
6 |
-
import numpy as np
|
7 |
-
import torch
|
8 |
-
|
9 |
-
from einops import rearrange
|
10 |
-
from .api import MiDaSInference
|
11 |
-
|
12 |
-
|
13 |
-
class MidasDetector:
|
14 |
-
def __init__(self):
|
15 |
-
self.model = MiDaSInference(model_type="dpt_hybrid").cuda()
|
16 |
-
self.rng = np.random.RandomState(0)
|
17 |
-
|
18 |
-
def __call__(self, input_image):
|
19 |
-
assert input_image.ndim == 3
|
20 |
-
image_depth = input_image
|
21 |
-
with torch.no_grad():
|
22 |
-
image_depth = torch.from_numpy(image_depth).float().cuda()
|
23 |
-
image_depth = image_depth / 127.5 - 1.0
|
24 |
-
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
25 |
-
depth = self.model(image_depth)[0]
|
26 |
-
|
27 |
-
depth -= torch.min(depth)
|
28 |
-
depth /= torch.max(depth)
|
29 |
-
depth = depth.cpu().numpy()
|
30 |
-
depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8)
|
31 |
-
|
32 |
-
return depth_image
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/midas/api.py
DELETED
@@ -1,169 +0,0 @@
|
|
1 |
-
# based on https://github.com/isl-org/MiDaS
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
import os
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
from torchvision.transforms import Compose
|
8 |
-
|
9 |
-
from .midas.dpt_depth import DPTDepthModel
|
10 |
-
from .midas.midas_net import MidasNet
|
11 |
-
from .midas.midas_net_custom import MidasNet_small
|
12 |
-
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
|
13 |
-
from annotator.util import annotator_ckpts_path
|
14 |
-
|
15 |
-
|
16 |
-
ISL_PATHS = {
|
17 |
-
"dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"),
|
18 |
-
"dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
|
19 |
-
"midas_v21": "",
|
20 |
-
"midas_v21_small": "",
|
21 |
-
}
|
22 |
-
|
23 |
-
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/dpt_hybrid-midas-501f0c75.pt"
|
24 |
-
|
25 |
-
|
26 |
-
def disabled_train(self, mode=True):
|
27 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
28 |
-
does not change anymore."""
|
29 |
-
return self
|
30 |
-
|
31 |
-
|
32 |
-
def load_midas_transform(model_type):
|
33 |
-
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
34 |
-
# load transform only
|
35 |
-
if model_type == "dpt_large": # DPT-Large
|
36 |
-
net_w, net_h = 384, 384
|
37 |
-
resize_mode = "minimal"
|
38 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
39 |
-
|
40 |
-
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
41 |
-
net_w, net_h = 384, 384
|
42 |
-
resize_mode = "minimal"
|
43 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
44 |
-
|
45 |
-
elif model_type == "midas_v21":
|
46 |
-
net_w, net_h = 384, 384
|
47 |
-
resize_mode = "upper_bound"
|
48 |
-
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
49 |
-
|
50 |
-
elif model_type == "midas_v21_small":
|
51 |
-
net_w, net_h = 256, 256
|
52 |
-
resize_mode = "upper_bound"
|
53 |
-
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
54 |
-
|
55 |
-
else:
|
56 |
-
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
57 |
-
|
58 |
-
transform = Compose(
|
59 |
-
[
|
60 |
-
Resize(
|
61 |
-
net_w,
|
62 |
-
net_h,
|
63 |
-
resize_target=None,
|
64 |
-
keep_aspect_ratio=True,
|
65 |
-
ensure_multiple_of=32,
|
66 |
-
resize_method=resize_mode,
|
67 |
-
image_interpolation_method=cv2.INTER_CUBIC,
|
68 |
-
),
|
69 |
-
normalization,
|
70 |
-
PrepareForNet(),
|
71 |
-
]
|
72 |
-
)
|
73 |
-
|
74 |
-
return transform
|
75 |
-
|
76 |
-
|
77 |
-
def load_model(model_type):
|
78 |
-
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
79 |
-
# load network
|
80 |
-
model_path = ISL_PATHS[model_type]
|
81 |
-
if model_type == "dpt_large": # DPT-Large
|
82 |
-
model = DPTDepthModel(
|
83 |
-
path=model_path,
|
84 |
-
backbone="vitl16_384",
|
85 |
-
non_negative=True,
|
86 |
-
)
|
87 |
-
net_w, net_h = 384, 384
|
88 |
-
resize_mode = "minimal"
|
89 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
90 |
-
|
91 |
-
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
92 |
-
if not os.path.exists(model_path):
|
93 |
-
from basicsr.utils.download_util import load_file_from_url
|
94 |
-
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
95 |
-
|
96 |
-
model = DPTDepthModel(
|
97 |
-
path=model_path,
|
98 |
-
backbone="vitb_rn50_384",
|
99 |
-
non_negative=True,
|
100 |
-
)
|
101 |
-
net_w, net_h = 384, 384
|
102 |
-
resize_mode = "minimal"
|
103 |
-
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
104 |
-
|
105 |
-
elif model_type == "midas_v21":
|
106 |
-
model = MidasNet(model_path, non_negative=True)
|
107 |
-
net_w, net_h = 384, 384
|
108 |
-
resize_mode = "upper_bound"
|
109 |
-
normalization = NormalizeImage(
|
110 |
-
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
111 |
-
)
|
112 |
-
|
113 |
-
elif model_type == "midas_v21_small":
|
114 |
-
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
115 |
-
non_negative=True, blocks={'expand': True})
|
116 |
-
net_w, net_h = 256, 256
|
117 |
-
resize_mode = "upper_bound"
|
118 |
-
normalization = NormalizeImage(
|
119 |
-
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
120 |
-
)
|
121 |
-
|
122 |
-
else:
|
123 |
-
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
124 |
-
assert False
|
125 |
-
|
126 |
-
transform = Compose(
|
127 |
-
[
|
128 |
-
Resize(
|
129 |
-
net_w,
|
130 |
-
net_h,
|
131 |
-
resize_target=None,
|
132 |
-
keep_aspect_ratio=True,
|
133 |
-
ensure_multiple_of=32,
|
134 |
-
resize_method=resize_mode,
|
135 |
-
image_interpolation_method=cv2.INTER_CUBIC,
|
136 |
-
),
|
137 |
-
normalization,
|
138 |
-
PrepareForNet(),
|
139 |
-
]
|
140 |
-
)
|
141 |
-
|
142 |
-
return model.eval(), transform
|
143 |
-
|
144 |
-
|
145 |
-
class MiDaSInference(nn.Module):
|
146 |
-
MODEL_TYPES_TORCH_HUB = [
|
147 |
-
"DPT_Large",
|
148 |
-
"DPT_Hybrid",
|
149 |
-
"MiDaS_small"
|
150 |
-
]
|
151 |
-
MODEL_TYPES_ISL = [
|
152 |
-
"dpt_large",
|
153 |
-
"dpt_hybrid",
|
154 |
-
"midas_v21",
|
155 |
-
"midas_v21_small",
|
156 |
-
]
|
157 |
-
|
158 |
-
def __init__(self, model_type):
|
159 |
-
super().__init__()
|
160 |
-
assert (model_type in self.MODEL_TYPES_ISL)
|
161 |
-
model, _ = load_model(model_type)
|
162 |
-
self.model = model
|
163 |
-
self.model.train = disabled_train
|
164 |
-
|
165 |
-
def forward(self, x):
|
166 |
-
with torch.no_grad():
|
167 |
-
prediction = self.model(x)
|
168 |
-
return prediction
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/midas/midas/__init__.py
DELETED
File without changes
|
annotator/midas/midas/base_model.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
|
4 |
-
class BaseModel(torch.nn.Module):
|
5 |
-
def load(self, path):
|
6 |
-
"""Load model from file.
|
7 |
-
|
8 |
-
Args:
|
9 |
-
path (str): file path
|
10 |
-
"""
|
11 |
-
parameters = torch.load(path, map_location=torch.device('cpu'))
|
12 |
-
|
13 |
-
if "optimizer" in parameters:
|
14 |
-
parameters = parameters["model"]
|
15 |
-
|
16 |
-
self.load_state_dict(parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/midas/midas/blocks.py
DELETED
@@ -1,342 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from .vit import (
|
5 |
-
_make_pretrained_vitb_rn50_384,
|
6 |
-
_make_pretrained_vitl16_384,
|
7 |
-
_make_pretrained_vitb16_384,
|
8 |
-
forward_vit,
|
9 |
-
)
|
10 |
-
|
11 |
-
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
|
12 |
-
if backbone == "vitl16_384":
|
13 |
-
pretrained = _make_pretrained_vitl16_384(
|
14 |
-
use_pretrained, hooks=hooks, use_readout=use_readout
|
15 |
-
)
|
16 |
-
scratch = _make_scratch(
|
17 |
-
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
18 |
-
) # ViT-L/16 - 85.0% Top1 (backbone)
|
19 |
-
elif backbone == "vitb_rn50_384":
|
20 |
-
pretrained = _make_pretrained_vitb_rn50_384(
|
21 |
-
use_pretrained,
|
22 |
-
hooks=hooks,
|
23 |
-
use_vit_only=use_vit_only,
|
24 |
-
use_readout=use_readout,
|
25 |
-
)
|
26 |
-
scratch = _make_scratch(
|
27 |
-
[256, 512, 768, 768], features, groups=groups, expand=expand
|
28 |
-
) # ViT-H/16 - 85.0% Top1 (backbone)
|
29 |
-
elif backbone == "vitb16_384":
|
30 |
-
pretrained = _make_pretrained_vitb16_384(
|
31 |
-
use_pretrained, hooks=hooks, use_readout=use_readout
|
32 |
-
)
|
33 |
-
scratch = _make_scratch(
|
34 |
-
[96, 192, 384, 768], features, groups=groups, expand=expand
|
35 |
-
) # ViT-B/16 - 84.6% Top1 (backbone)
|
36 |
-
elif backbone == "resnext101_wsl":
|
37 |
-
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
38 |
-
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
39 |
-
elif backbone == "efficientnet_lite3":
|
40 |
-
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
41 |
-
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
42 |
-
else:
|
43 |
-
print(f"Backbone '{backbone}' not implemented")
|
44 |
-
assert False
|
45 |
-
|
46 |
-
return pretrained, scratch
|
47 |
-
|
48 |
-
|
49 |
-
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
50 |
-
scratch = nn.Module()
|
51 |
-
|
52 |
-
out_shape1 = out_shape
|
53 |
-
out_shape2 = out_shape
|
54 |
-
out_shape3 = out_shape
|
55 |
-
out_shape4 = out_shape
|
56 |
-
if expand==True:
|
57 |
-
out_shape1 = out_shape
|
58 |
-
out_shape2 = out_shape*2
|
59 |
-
out_shape3 = out_shape*4
|
60 |
-
out_shape4 = out_shape*8
|
61 |
-
|
62 |
-
scratch.layer1_rn = nn.Conv2d(
|
63 |
-
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
64 |
-
)
|
65 |
-
scratch.layer2_rn = nn.Conv2d(
|
66 |
-
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
67 |
-
)
|
68 |
-
scratch.layer3_rn = nn.Conv2d(
|
69 |
-
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
70 |
-
)
|
71 |
-
scratch.layer4_rn = nn.Conv2d(
|
72 |
-
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
73 |
-
)
|
74 |
-
|
75 |
-
return scratch
|
76 |
-
|
77 |
-
|
78 |
-
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
79 |
-
efficientnet = torch.hub.load(
|
80 |
-
"rwightman/gen-efficientnet-pytorch",
|
81 |
-
"tf_efficientnet_lite3",
|
82 |
-
pretrained=use_pretrained,
|
83 |
-
exportable=exportable
|
84 |
-
)
|
85 |
-
return _make_efficientnet_backbone(efficientnet)
|
86 |
-
|
87 |
-
|
88 |
-
def _make_efficientnet_backbone(effnet):
|
89 |
-
pretrained = nn.Module()
|
90 |
-
|
91 |
-
pretrained.layer1 = nn.Sequential(
|
92 |
-
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
93 |
-
)
|
94 |
-
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
95 |
-
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
96 |
-
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
97 |
-
|
98 |
-
return pretrained
|
99 |
-
|
100 |
-
|
101 |
-
def _make_resnet_backbone(resnet):
|
102 |
-
pretrained = nn.Module()
|
103 |
-
pretrained.layer1 = nn.Sequential(
|
104 |
-
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
105 |
-
)
|
106 |
-
|
107 |
-
pretrained.layer2 = resnet.layer2
|
108 |
-
pretrained.layer3 = resnet.layer3
|
109 |
-
pretrained.layer4 = resnet.layer4
|
110 |
-
|
111 |
-
return pretrained
|
112 |
-
|
113 |
-
|
114 |
-
def _make_pretrained_resnext101_wsl(use_pretrained):
|
115 |
-
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
116 |
-
return _make_resnet_backbone(resnet)
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
class Interpolate(nn.Module):
|
121 |
-
"""Interpolation module.
|
122 |
-
"""
|
123 |
-
|
124 |
-
def __init__(self, scale_factor, mode, align_corners=False):
|
125 |
-
"""Init.
|
126 |
-
|
127 |
-
Args:
|
128 |
-
scale_factor (float): scaling
|
129 |
-
mode (str): interpolation mode
|
130 |
-
"""
|
131 |
-
super(Interpolate, self).__init__()
|
132 |
-
|
133 |
-
self.interp = nn.functional.interpolate
|
134 |
-
self.scale_factor = scale_factor
|
135 |
-
self.mode = mode
|
136 |
-
self.align_corners = align_corners
|
137 |
-
|
138 |
-
def forward(self, x):
|
139 |
-
"""Forward pass.
|
140 |
-
|
141 |
-
Args:
|
142 |
-
x (tensor): input
|
143 |
-
|
144 |
-
Returns:
|
145 |
-
tensor: interpolated data
|
146 |
-
"""
|
147 |
-
|
148 |
-
x = self.interp(
|
149 |
-
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
150 |
-
)
|
151 |
-
|
152 |
-
return x
|
153 |
-
|
154 |
-
|
155 |
-
class ResidualConvUnit(nn.Module):
|
156 |
-
"""Residual convolution module.
|
157 |
-
"""
|
158 |
-
|
159 |
-
def __init__(self, features):
|
160 |
-
"""Init.
|
161 |
-
|
162 |
-
Args:
|
163 |
-
features (int): number of features
|
164 |
-
"""
|
165 |
-
super().__init__()
|
166 |
-
|
167 |
-
self.conv1 = nn.Conv2d(
|
168 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
169 |
-
)
|
170 |
-
|
171 |
-
self.conv2 = nn.Conv2d(
|
172 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
173 |
-
)
|
174 |
-
|
175 |
-
self.relu = nn.ReLU(inplace=True)
|
176 |
-
|
177 |
-
def forward(self, x):
|
178 |
-
"""Forward pass.
|
179 |
-
|
180 |
-
Args:
|
181 |
-
x (tensor): input
|
182 |
-
|
183 |
-
Returns:
|
184 |
-
tensor: output
|
185 |
-
"""
|
186 |
-
out = self.relu(x)
|
187 |
-
out = self.conv1(out)
|
188 |
-
out = self.relu(out)
|
189 |
-
out = self.conv2(out)
|
190 |
-
|
191 |
-
return out + x
|
192 |
-
|
193 |
-
|
194 |
-
class FeatureFusionBlock(nn.Module):
|
195 |
-
"""Feature fusion block.
|
196 |
-
"""
|
197 |
-
|
198 |
-
def __init__(self, features):
|
199 |
-
"""Init.
|
200 |
-
|
201 |
-
Args:
|
202 |
-
features (int): number of features
|
203 |
-
"""
|
204 |
-
super(FeatureFusionBlock, self).__init__()
|
205 |
-
|
206 |
-
self.resConfUnit1 = ResidualConvUnit(features)
|
207 |
-
self.resConfUnit2 = ResidualConvUnit(features)
|
208 |
-
|
209 |
-
def forward(self, *xs):
|
210 |
-
"""Forward pass.
|
211 |
-
|
212 |
-
Returns:
|
213 |
-
tensor: output
|
214 |
-
"""
|
215 |
-
output = xs[0]
|
216 |
-
|
217 |
-
if len(xs) == 2:
|
218 |
-
output += self.resConfUnit1(xs[1])
|
219 |
-
|
220 |
-
output = self.resConfUnit2(output)
|
221 |
-
|
222 |
-
output = nn.functional.interpolate(
|
223 |
-
output, scale_factor=2, mode="bilinear", align_corners=True
|
224 |
-
)
|
225 |
-
|
226 |
-
return output
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
class ResidualConvUnit_custom(nn.Module):
|
232 |
-
"""Residual convolution module.
|
233 |
-
"""
|
234 |
-
|
235 |
-
def __init__(self, features, activation, bn):
|
236 |
-
"""Init.
|
237 |
-
|
238 |
-
Args:
|
239 |
-
features (int): number of features
|
240 |
-
"""
|
241 |
-
super().__init__()
|
242 |
-
|
243 |
-
self.bn = bn
|
244 |
-
|
245 |
-
self.groups=1
|
246 |
-
|
247 |
-
self.conv1 = nn.Conv2d(
|
248 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
249 |
-
)
|
250 |
-
|
251 |
-
self.conv2 = nn.Conv2d(
|
252 |
-
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
253 |
-
)
|
254 |
-
|
255 |
-
if self.bn==True:
|
256 |
-
self.bn1 = nn.BatchNorm2d(features)
|
257 |
-
self.bn2 = nn.BatchNorm2d(features)
|
258 |
-
|
259 |
-
self.activation = activation
|
260 |
-
|
261 |
-
self.skip_add = nn.quantized.FloatFunctional()
|
262 |
-
|
263 |
-
def forward(self, x):
|
264 |
-
"""Forward pass.
|
265 |
-
|
266 |
-
Args:
|
267 |
-
x (tensor): input
|
268 |
-
|
269 |
-
Returns:
|
270 |
-
tensor: output
|
271 |
-
"""
|
272 |
-
|
273 |
-
out = self.activation(x)
|
274 |
-
out = self.conv1(out)
|
275 |
-
if self.bn==True:
|
276 |
-
out = self.bn1(out)
|
277 |
-
|
278 |
-
out = self.activation(out)
|
279 |
-
out = self.conv2(out)
|
280 |
-
if self.bn==True:
|
281 |
-
out = self.bn2(out)
|
282 |
-
|
283 |
-
if self.groups > 1:
|
284 |
-
out = self.conv_merge(out)
|
285 |
-
|
286 |
-
return self.skip_add.add(out, x)
|
287 |
-
|
288 |
-
# return out + x
|
289 |
-
|
290 |
-
|
291 |
-
class FeatureFusionBlock_custom(nn.Module):
|
292 |
-
"""Feature fusion block.
|
293 |
-
"""
|
294 |
-
|
295 |
-
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
|
296 |
-
"""Init.
|
297 |
-
|
298 |
-
Args:
|
299 |
-
features (int): number of features
|
300 |
-
"""
|
301 |
-
super(FeatureFusionBlock_custom, self).__init__()
|
302 |
-
|
303 |
-
self.deconv = deconv
|
304 |
-
self.align_corners = align_corners
|
305 |
-
|
306 |
-
self.groups=1
|
307 |
-
|
308 |
-
self.expand = expand
|
309 |
-
out_features = features
|
310 |
-
if self.expand==True:
|
311 |
-
out_features = features//2
|
312 |
-
|
313 |
-
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
314 |
-
|
315 |
-
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
316 |
-
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
317 |
-
|
318 |
-
self.skip_add = nn.quantized.FloatFunctional()
|
319 |
-
|
320 |
-
def forward(self, *xs):
|
321 |
-
"""Forward pass.
|
322 |
-
|
323 |
-
Returns:
|
324 |
-
tensor: output
|
325 |
-
"""
|
326 |
-
output = xs[0]
|
327 |
-
|
328 |
-
if len(xs) == 2:
|
329 |
-
res = self.resConfUnit1(xs[1])
|
330 |
-
output = self.skip_add.add(output, res)
|
331 |
-
# output += res
|
332 |
-
|
333 |
-
output = self.resConfUnit2(output)
|
334 |
-
|
335 |
-
output = nn.functional.interpolate(
|
336 |
-
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
337 |
-
)
|
338 |
-
|
339 |
-
output = self.out_conv(output)
|
340 |
-
|
341 |
-
return output
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/midas/midas/dpt_depth.py
DELETED
@@ -1,109 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from .base_model import BaseModel
|
6 |
-
from .blocks import (
|
7 |
-
FeatureFusionBlock,
|
8 |
-
FeatureFusionBlock_custom,
|
9 |
-
Interpolate,
|
10 |
-
_make_encoder,
|
11 |
-
forward_vit,
|
12 |
-
)
|
13 |
-
|
14 |
-
|
15 |
-
def _make_fusion_block(features, use_bn):
|
16 |
-
return FeatureFusionBlock_custom(
|
17 |
-
features,
|
18 |
-
nn.ReLU(False),
|
19 |
-
deconv=False,
|
20 |
-
bn=use_bn,
|
21 |
-
expand=False,
|
22 |
-
align_corners=True,
|
23 |
-
)
|
24 |
-
|
25 |
-
|
26 |
-
class DPT(BaseModel):
|
27 |
-
def __init__(
|
28 |
-
self,
|
29 |
-
head,
|
30 |
-
features=256,
|
31 |
-
backbone="vitb_rn50_384",
|
32 |
-
readout="project",
|
33 |
-
channels_last=False,
|
34 |
-
use_bn=False,
|
35 |
-
):
|
36 |
-
|
37 |
-
super(DPT, self).__init__()
|
38 |
-
|
39 |
-
self.channels_last = channels_last
|
40 |
-
|
41 |
-
hooks = {
|
42 |
-
"vitb_rn50_384": [0, 1, 8, 11],
|
43 |
-
"vitb16_384": [2, 5, 8, 11],
|
44 |
-
"vitl16_384": [5, 11, 17, 23],
|
45 |
-
}
|
46 |
-
|
47 |
-
# Instantiate backbone and reassemble blocks
|
48 |
-
self.pretrained, self.scratch = _make_encoder(
|
49 |
-
backbone,
|
50 |
-
features,
|
51 |
-
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
52 |
-
groups=1,
|
53 |
-
expand=False,
|
54 |
-
exportable=False,
|
55 |
-
hooks=hooks[backbone],
|
56 |
-
use_readout=readout,
|
57 |
-
)
|
58 |
-
|
59 |
-
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
60 |
-
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
61 |
-
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
62 |
-
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
63 |
-
|
64 |
-
self.scratch.output_conv = head
|
65 |
-
|
66 |
-
|
67 |
-
def forward(self, x):
|
68 |
-
if self.channels_last == True:
|
69 |
-
x.contiguous(memory_format=torch.channels_last)
|
70 |
-
|
71 |
-
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
72 |
-
|
73 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
74 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
75 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
76 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
77 |
-
|
78 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
79 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
80 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
81 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
82 |
-
|
83 |
-
out = self.scratch.output_conv(path_1)
|
84 |
-
|
85 |
-
return out
|
86 |
-
|
87 |
-
|
88 |
-
class DPTDepthModel(DPT):
|
89 |
-
def __init__(self, path=None, non_negative=True, **kwargs):
|
90 |
-
features = kwargs["features"] if "features" in kwargs else 256
|
91 |
-
|
92 |
-
head = nn.Sequential(
|
93 |
-
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
94 |
-
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
95 |
-
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
96 |
-
nn.ReLU(True),
|
97 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
98 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
99 |
-
nn.Identity(),
|
100 |
-
)
|
101 |
-
|
102 |
-
super().__init__(head, **kwargs)
|
103 |
-
|
104 |
-
if path is not None:
|
105 |
-
self.load(path)
|
106 |
-
|
107 |
-
def forward(self, x):
|
108 |
-
return super().forward(x).squeeze(dim=1)
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/midas/midas/midas_net.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
-
This file contains code that is adapted from
|
3 |
-
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
-
"""
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
|
8 |
-
from .base_model import BaseModel
|
9 |
-
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
-
|
11 |
-
|
12 |
-
class MidasNet(BaseModel):
|
13 |
-
"""Network for monocular depth estimation.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self, path=None, features=256, non_negative=True):
|
17 |
-
"""Init.
|
18 |
-
|
19 |
-
Args:
|
20 |
-
path (str, optional): Path to saved model. Defaults to None.
|
21 |
-
features (int, optional): Number of features. Defaults to 256.
|
22 |
-
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
23 |
-
"""
|
24 |
-
print("Loading weights: ", path)
|
25 |
-
|
26 |
-
super(MidasNet, self).__init__()
|
27 |
-
|
28 |
-
use_pretrained = False if path is None else True
|
29 |
-
|
30 |
-
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
31 |
-
|
32 |
-
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
33 |
-
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
34 |
-
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
35 |
-
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
36 |
-
|
37 |
-
self.scratch.output_conv = nn.Sequential(
|
38 |
-
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
39 |
-
Interpolate(scale_factor=2, mode="bilinear"),
|
40 |
-
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
41 |
-
nn.ReLU(True),
|
42 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
43 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
44 |
-
)
|
45 |
-
|
46 |
-
if path:
|
47 |
-
self.load(path)
|
48 |
-
|
49 |
-
def forward(self, x):
|
50 |
-
"""Forward pass.
|
51 |
-
|
52 |
-
Args:
|
53 |
-
x (tensor): input data (image)
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
tensor: depth
|
57 |
-
"""
|
58 |
-
|
59 |
-
layer_1 = self.pretrained.layer1(x)
|
60 |
-
layer_2 = self.pretrained.layer2(layer_1)
|
61 |
-
layer_3 = self.pretrained.layer3(layer_2)
|
62 |
-
layer_4 = self.pretrained.layer4(layer_3)
|
63 |
-
|
64 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
65 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
66 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
67 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
68 |
-
|
69 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
70 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
71 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
72 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
73 |
-
|
74 |
-
out = self.scratch.output_conv(path_1)
|
75 |
-
|
76 |
-
return torch.squeeze(out, dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/midas/midas/midas_net_custom.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
-
This file contains code that is adapted from
|
3 |
-
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
-
"""
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
|
8 |
-
from .base_model import BaseModel
|
9 |
-
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
10 |
-
|
11 |
-
|
12 |
-
class MidasNet_small(BaseModel):
|
13 |
-
"""Network for monocular depth estimation.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
17 |
-
blocks={'expand': True}):
|
18 |
-
"""Init.
|
19 |
-
|
20 |
-
Args:
|
21 |
-
path (str, optional): Path to saved model. Defaults to None.
|
22 |
-
features (int, optional): Number of features. Defaults to 256.
|
23 |
-
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
24 |
-
"""
|
25 |
-
print("Loading weights: ", path)
|
26 |
-
|
27 |
-
super(MidasNet_small, self).__init__()
|
28 |
-
|
29 |
-
use_pretrained = False if path else True
|
30 |
-
|
31 |
-
self.channels_last = channels_last
|
32 |
-
self.blocks = blocks
|
33 |
-
self.backbone = backbone
|
34 |
-
|
35 |
-
self.groups = 1
|
36 |
-
|
37 |
-
features1=features
|
38 |
-
features2=features
|
39 |
-
features3=features
|
40 |
-
features4=features
|
41 |
-
self.expand = False
|
42 |
-
if "expand" in self.blocks and self.blocks['expand'] == True:
|
43 |
-
self.expand = True
|
44 |
-
features1=features
|
45 |
-
features2=features*2
|
46 |
-
features3=features*4
|
47 |
-
features4=features*8
|
48 |
-
|
49 |
-
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
50 |
-
|
51 |
-
self.scratch.activation = nn.ReLU(False)
|
52 |
-
|
53 |
-
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
54 |
-
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
55 |
-
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
56 |
-
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
57 |
-
|
58 |
-
|
59 |
-
self.scratch.output_conv = nn.Sequential(
|
60 |
-
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
61 |
-
Interpolate(scale_factor=2, mode="bilinear"),
|
62 |
-
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
63 |
-
self.scratch.activation,
|
64 |
-
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
65 |
-
nn.ReLU(True) if non_negative else nn.Identity(),
|
66 |
-
nn.Identity(),
|
67 |
-
)
|
68 |
-
|
69 |
-
if path:
|
70 |
-
self.load(path)
|
71 |
-
|
72 |
-
|
73 |
-
def forward(self, x):
|
74 |
-
"""Forward pass.
|
75 |
-
|
76 |
-
Args:
|
77 |
-
x (tensor): input data (image)
|
78 |
-
|
79 |
-
Returns:
|
80 |
-
tensor: depth
|
81 |
-
"""
|
82 |
-
if self.channels_last==True:
|
83 |
-
print("self.channels_last = ", self.channels_last)
|
84 |
-
x.contiguous(memory_format=torch.channels_last)
|
85 |
-
|
86 |
-
|
87 |
-
layer_1 = self.pretrained.layer1(x)
|
88 |
-
layer_2 = self.pretrained.layer2(layer_1)
|
89 |
-
layer_3 = self.pretrained.layer3(layer_2)
|
90 |
-
layer_4 = self.pretrained.layer4(layer_3)
|
91 |
-
|
92 |
-
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
93 |
-
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
94 |
-
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
95 |
-
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
96 |
-
|
97 |
-
|
98 |
-
path_4 = self.scratch.refinenet4(layer_4_rn)
|
99 |
-
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
100 |
-
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
101 |
-
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
102 |
-
|
103 |
-
out = self.scratch.output_conv(path_1)
|
104 |
-
|
105 |
-
return torch.squeeze(out, dim=1)
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
def fuse_model(m):
|
110 |
-
prev_previous_type = nn.Identity()
|
111 |
-
prev_previous_name = ''
|
112 |
-
previous_type = nn.Identity()
|
113 |
-
previous_name = ''
|
114 |
-
for name, module in m.named_modules():
|
115 |
-
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
116 |
-
# print("FUSED ", prev_previous_name, previous_name, name)
|
117 |
-
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
118 |
-
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
119 |
-
# print("FUSED ", prev_previous_name, previous_name)
|
120 |
-
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
121 |
-
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
122 |
-
# print("FUSED ", previous_name, name)
|
123 |
-
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
124 |
-
|
125 |
-
prev_previous_type = previous_type
|
126 |
-
prev_previous_name = previous_name
|
127 |
-
previous_type = type(module)
|
128 |
-
previous_name = name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/midas/midas/transforms.py
DELETED
@@ -1,234 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
import math
|
4 |
-
|
5 |
-
|
6 |
-
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
-
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
-
|
9 |
-
Args:
|
10 |
-
sample (dict): sample
|
11 |
-
size (tuple): image size
|
12 |
-
|
13 |
-
Returns:
|
14 |
-
tuple: new size
|
15 |
-
"""
|
16 |
-
shape = list(sample["disparity"].shape)
|
17 |
-
|
18 |
-
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
-
return sample
|
20 |
-
|
21 |
-
scale = [0, 0]
|
22 |
-
scale[0] = size[0] / shape[0]
|
23 |
-
scale[1] = size[1] / shape[1]
|
24 |
-
|
25 |
-
scale = max(scale)
|
26 |
-
|
27 |
-
shape[0] = math.ceil(scale * shape[0])
|
28 |
-
shape[1] = math.ceil(scale * shape[1])
|
29 |
-
|
30 |
-
# resize
|
31 |
-
sample["image"] = cv2.resize(
|
32 |
-
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
-
)
|
34 |
-
|
35 |
-
sample["disparity"] = cv2.resize(
|
36 |
-
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
-
)
|
38 |
-
sample["mask"] = cv2.resize(
|
39 |
-
sample["mask"].astype(np.float32),
|
40 |
-
tuple(shape[::-1]),
|
41 |
-
interpolation=cv2.INTER_NEAREST,
|
42 |
-
)
|
43 |
-
sample["mask"] = sample["mask"].astype(bool)
|
44 |
-
|
45 |
-
return tuple(shape)
|
46 |
-
|
47 |
-
|
48 |
-
class Resize(object):
|
49 |
-
"""Resize sample to given size (width, height).
|
50 |
-
"""
|
51 |
-
|
52 |
-
def __init__(
|
53 |
-
self,
|
54 |
-
width,
|
55 |
-
height,
|
56 |
-
resize_target=True,
|
57 |
-
keep_aspect_ratio=False,
|
58 |
-
ensure_multiple_of=1,
|
59 |
-
resize_method="lower_bound",
|
60 |
-
image_interpolation_method=cv2.INTER_AREA,
|
61 |
-
):
|
62 |
-
"""Init.
|
63 |
-
|
64 |
-
Args:
|
65 |
-
width (int): desired output width
|
66 |
-
height (int): desired output height
|
67 |
-
resize_target (bool, optional):
|
68 |
-
True: Resize the full sample (image, mask, target).
|
69 |
-
False: Resize image only.
|
70 |
-
Defaults to True.
|
71 |
-
keep_aspect_ratio (bool, optional):
|
72 |
-
True: Keep the aspect ratio of the input sample.
|
73 |
-
Output sample might not have the given width and height, and
|
74 |
-
resize behaviour depends on the parameter 'resize_method'.
|
75 |
-
Defaults to False.
|
76 |
-
ensure_multiple_of (int, optional):
|
77 |
-
Output width and height is constrained to be multiple of this parameter.
|
78 |
-
Defaults to 1.
|
79 |
-
resize_method (str, optional):
|
80 |
-
"lower_bound": Output will be at least as large as the given size.
|
81 |
-
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
-
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
-
Defaults to "lower_bound".
|
84 |
-
"""
|
85 |
-
self.__width = width
|
86 |
-
self.__height = height
|
87 |
-
|
88 |
-
self.__resize_target = resize_target
|
89 |
-
self.__keep_aspect_ratio = keep_aspect_ratio
|
90 |
-
self.__multiple_of = ensure_multiple_of
|
91 |
-
self.__resize_method = resize_method
|
92 |
-
self.__image_interpolation_method = image_interpolation_method
|
93 |
-
|
94 |
-
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
95 |
-
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
96 |
-
|
97 |
-
if max_val is not None and y > max_val:
|
98 |
-
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
99 |
-
|
100 |
-
if y < min_val:
|
101 |
-
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
-
|
103 |
-
return y
|
104 |
-
|
105 |
-
def get_size(self, width, height):
|
106 |
-
# determine new height and width
|
107 |
-
scale_height = self.__height / height
|
108 |
-
scale_width = self.__width / width
|
109 |
-
|
110 |
-
if self.__keep_aspect_ratio:
|
111 |
-
if self.__resize_method == "lower_bound":
|
112 |
-
# scale such that output size is lower bound
|
113 |
-
if scale_width > scale_height:
|
114 |
-
# fit width
|
115 |
-
scale_height = scale_width
|
116 |
-
else:
|
117 |
-
# fit height
|
118 |
-
scale_width = scale_height
|
119 |
-
elif self.__resize_method == "upper_bound":
|
120 |
-
# scale such that output size is upper bound
|
121 |
-
if scale_width < scale_height:
|
122 |
-
# fit width
|
123 |
-
scale_height = scale_width
|
124 |
-
else:
|
125 |
-
# fit height
|
126 |
-
scale_width = scale_height
|
127 |
-
elif self.__resize_method == "minimal":
|
128 |
-
# scale as least as possbile
|
129 |
-
if abs(1 - scale_width) < abs(1 - scale_height):
|
130 |
-
# fit width
|
131 |
-
scale_height = scale_width
|
132 |
-
else:
|
133 |
-
# fit height
|
134 |
-
scale_width = scale_height
|
135 |
-
else:
|
136 |
-
raise ValueError(
|
137 |
-
f"resize_method {self.__resize_method} not implemented"
|
138 |
-
)
|
139 |
-
|
140 |
-
if self.__resize_method == "lower_bound":
|
141 |
-
new_height = self.constrain_to_multiple_of(
|
142 |
-
scale_height * height, min_val=self.__height
|
143 |
-
)
|
144 |
-
new_width = self.constrain_to_multiple_of(
|
145 |
-
scale_width * width, min_val=self.__width
|
146 |
-
)
|
147 |
-
elif self.__resize_method == "upper_bound":
|
148 |
-
new_height = self.constrain_to_multiple_of(
|
149 |
-
scale_height * height, max_val=self.__height
|
150 |
-
)
|
151 |
-
new_width = self.constrain_to_multiple_of(
|
152 |
-
scale_width * width, max_val=self.__width
|
153 |
-
)
|
154 |
-
elif self.__resize_method == "minimal":
|
155 |
-
new_height = self.constrain_to_multiple_of(scale_height * height)
|
156 |
-
new_width = self.constrain_to_multiple_of(scale_width * width)
|
157 |
-
else:
|
158 |
-
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
159 |
-
|
160 |
-
return (new_width, new_height)
|
161 |
-
|
162 |
-
def __call__(self, sample):
|
163 |
-
width, height = self.get_size(
|
164 |
-
sample["image"].shape[1], sample["image"].shape[0]
|
165 |
-
)
|
166 |
-
|
167 |
-
# resize sample
|
168 |
-
sample["image"] = cv2.resize(
|
169 |
-
sample["image"],
|
170 |
-
(width, height),
|
171 |
-
interpolation=self.__image_interpolation_method,
|
172 |
-
)
|
173 |
-
|
174 |
-
if self.__resize_target:
|
175 |
-
if "disparity" in sample:
|
176 |
-
sample["disparity"] = cv2.resize(
|
177 |
-
sample["disparity"],
|
178 |
-
(width, height),
|
179 |
-
interpolation=cv2.INTER_NEAREST,
|
180 |
-
)
|
181 |
-
|
182 |
-
if "depth" in sample:
|
183 |
-
sample["depth"] = cv2.resize(
|
184 |
-
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
185 |
-
)
|
186 |
-
|
187 |
-
sample["mask"] = cv2.resize(
|
188 |
-
sample["mask"].astype(np.float32),
|
189 |
-
(width, height),
|
190 |
-
interpolation=cv2.INTER_NEAREST,
|
191 |
-
)
|
192 |
-
sample["mask"] = sample["mask"].astype(bool)
|
193 |
-
|
194 |
-
return sample
|
195 |
-
|
196 |
-
|
197 |
-
class NormalizeImage(object):
|
198 |
-
"""Normlize image by given mean and std.
|
199 |
-
"""
|
200 |
-
|
201 |
-
def __init__(self, mean, std):
|
202 |
-
self.__mean = mean
|
203 |
-
self.__std = std
|
204 |
-
|
205 |
-
def __call__(self, sample):
|
206 |
-
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
207 |
-
|
208 |
-
return sample
|
209 |
-
|
210 |
-
|
211 |
-
class PrepareForNet(object):
|
212 |
-
"""Prepare sample for usage as network input.
|
213 |
-
"""
|
214 |
-
|
215 |
-
def __init__(self):
|
216 |
-
pass
|
217 |
-
|
218 |
-
def __call__(self, sample):
|
219 |
-
image = np.transpose(sample["image"], (2, 0, 1))
|
220 |
-
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
221 |
-
|
222 |
-
if "mask" in sample:
|
223 |
-
sample["mask"] = sample["mask"].astype(np.float32)
|
224 |
-
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
225 |
-
|
226 |
-
if "disparity" in sample:
|
227 |
-
disparity = sample["disparity"].astype(np.float32)
|
228 |
-
sample["disparity"] = np.ascontiguousarray(disparity)
|
229 |
-
|
230 |
-
if "depth" in sample:
|
231 |
-
depth = sample["depth"].astype(np.float32)
|
232 |
-
sample["depth"] = np.ascontiguousarray(depth)
|
233 |
-
|
234 |
-
return sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/midas/midas/vit.py
DELETED
@@ -1,491 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import timm
|
4 |
-
import types
|
5 |
-
import math
|
6 |
-
import torch.nn.functional as F
|
7 |
-
|
8 |
-
|
9 |
-
class Slice(nn.Module):
|
10 |
-
def __init__(self, start_index=1):
|
11 |
-
super(Slice, self).__init__()
|
12 |
-
self.start_index = start_index
|
13 |
-
|
14 |
-
def forward(self, x):
|
15 |
-
return x[:, self.start_index :]
|
16 |
-
|
17 |
-
|
18 |
-
class AddReadout(nn.Module):
|
19 |
-
def __init__(self, start_index=1):
|
20 |
-
super(AddReadout, self).__init__()
|
21 |
-
self.start_index = start_index
|
22 |
-
|
23 |
-
def forward(self, x):
|
24 |
-
if self.start_index == 2:
|
25 |
-
readout = (x[:, 0] + x[:, 1]) / 2
|
26 |
-
else:
|
27 |
-
readout = x[:, 0]
|
28 |
-
return x[:, self.start_index :] + readout.unsqueeze(1)
|
29 |
-
|
30 |
-
|
31 |
-
class ProjectReadout(nn.Module):
|
32 |
-
def __init__(self, in_features, start_index=1):
|
33 |
-
super(ProjectReadout, self).__init__()
|
34 |
-
self.start_index = start_index
|
35 |
-
|
36 |
-
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
37 |
-
|
38 |
-
def forward(self, x):
|
39 |
-
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
40 |
-
features = torch.cat((x[:, self.start_index :], readout), -1)
|
41 |
-
|
42 |
-
return self.project(features)
|
43 |
-
|
44 |
-
|
45 |
-
class Transpose(nn.Module):
|
46 |
-
def __init__(self, dim0, dim1):
|
47 |
-
super(Transpose, self).__init__()
|
48 |
-
self.dim0 = dim0
|
49 |
-
self.dim1 = dim1
|
50 |
-
|
51 |
-
def forward(self, x):
|
52 |
-
x = x.transpose(self.dim0, self.dim1)
|
53 |
-
return x
|
54 |
-
|
55 |
-
|
56 |
-
def forward_vit(pretrained, x):
|
57 |
-
b, c, h, w = x.shape
|
58 |
-
|
59 |
-
glob = pretrained.model.forward_flex(x)
|
60 |
-
|
61 |
-
layer_1 = pretrained.activations["1"]
|
62 |
-
layer_2 = pretrained.activations["2"]
|
63 |
-
layer_3 = pretrained.activations["3"]
|
64 |
-
layer_4 = pretrained.activations["4"]
|
65 |
-
|
66 |
-
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
67 |
-
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
68 |
-
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
69 |
-
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
70 |
-
|
71 |
-
unflatten = nn.Sequential(
|
72 |
-
nn.Unflatten(
|
73 |
-
2,
|
74 |
-
torch.Size(
|
75 |
-
[
|
76 |
-
h // pretrained.model.patch_size[1],
|
77 |
-
w // pretrained.model.patch_size[0],
|
78 |
-
]
|
79 |
-
),
|
80 |
-
)
|
81 |
-
)
|
82 |
-
|
83 |
-
if layer_1.ndim == 3:
|
84 |
-
layer_1 = unflatten(layer_1)
|
85 |
-
if layer_2.ndim == 3:
|
86 |
-
layer_2 = unflatten(layer_2)
|
87 |
-
if layer_3.ndim == 3:
|
88 |
-
layer_3 = unflatten(layer_3)
|
89 |
-
if layer_4.ndim == 3:
|
90 |
-
layer_4 = unflatten(layer_4)
|
91 |
-
|
92 |
-
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
93 |
-
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
94 |
-
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
95 |
-
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
96 |
-
|
97 |
-
return layer_1, layer_2, layer_3, layer_4
|
98 |
-
|
99 |
-
|
100 |
-
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
101 |
-
posemb_tok, posemb_grid = (
|
102 |
-
posemb[:, : self.start_index],
|
103 |
-
posemb[0, self.start_index :],
|
104 |
-
)
|
105 |
-
|
106 |
-
gs_old = int(math.sqrt(len(posemb_grid)))
|
107 |
-
|
108 |
-
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
109 |
-
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
110 |
-
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
111 |
-
|
112 |
-
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
113 |
-
|
114 |
-
return posemb
|
115 |
-
|
116 |
-
|
117 |
-
def forward_flex(self, x):
|
118 |
-
b, c, h, w = x.shape
|
119 |
-
|
120 |
-
pos_embed = self._resize_pos_embed(
|
121 |
-
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
122 |
-
)
|
123 |
-
|
124 |
-
B = x.shape[0]
|
125 |
-
|
126 |
-
if hasattr(self.patch_embed, "backbone"):
|
127 |
-
x = self.patch_embed.backbone(x)
|
128 |
-
if isinstance(x, (list, tuple)):
|
129 |
-
x = x[-1] # last feature if backbone outputs list/tuple of features
|
130 |
-
|
131 |
-
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
132 |
-
|
133 |
-
if getattr(self, "dist_token", None) is not None:
|
134 |
-
cls_tokens = self.cls_token.expand(
|
135 |
-
B, -1, -1
|
136 |
-
) # stole cls_tokens impl from Phil Wang, thanks
|
137 |
-
dist_token = self.dist_token.expand(B, -1, -1)
|
138 |
-
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
139 |
-
else:
|
140 |
-
cls_tokens = self.cls_token.expand(
|
141 |
-
B, -1, -1
|
142 |
-
) # stole cls_tokens impl from Phil Wang, thanks
|
143 |
-
x = torch.cat((cls_tokens, x), dim=1)
|
144 |
-
|
145 |
-
x = x + pos_embed
|
146 |
-
x = self.pos_drop(x)
|
147 |
-
|
148 |
-
for blk in self.blocks:
|
149 |
-
x = blk(x)
|
150 |
-
|
151 |
-
x = self.norm(x)
|
152 |
-
|
153 |
-
return x
|
154 |
-
|
155 |
-
|
156 |
-
activations = {}
|
157 |
-
|
158 |
-
|
159 |
-
def get_activation(name):
|
160 |
-
def hook(model, input, output):
|
161 |
-
activations[name] = output
|
162 |
-
|
163 |
-
return hook
|
164 |
-
|
165 |
-
|
166 |
-
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
167 |
-
if use_readout == "ignore":
|
168 |
-
readout_oper = [Slice(start_index)] * len(features)
|
169 |
-
elif use_readout == "add":
|
170 |
-
readout_oper = [AddReadout(start_index)] * len(features)
|
171 |
-
elif use_readout == "project":
|
172 |
-
readout_oper = [
|
173 |
-
ProjectReadout(vit_features, start_index) for out_feat in features
|
174 |
-
]
|
175 |
-
else:
|
176 |
-
assert (
|
177 |
-
False
|
178 |
-
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
179 |
-
|
180 |
-
return readout_oper
|
181 |
-
|
182 |
-
|
183 |
-
def _make_vit_b16_backbone(
|
184 |
-
model,
|
185 |
-
features=[96, 192, 384, 768],
|
186 |
-
size=[384, 384],
|
187 |
-
hooks=[2, 5, 8, 11],
|
188 |
-
vit_features=768,
|
189 |
-
use_readout="ignore",
|
190 |
-
start_index=1,
|
191 |
-
):
|
192 |
-
pretrained = nn.Module()
|
193 |
-
|
194 |
-
pretrained.model = model
|
195 |
-
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
196 |
-
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
197 |
-
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
198 |
-
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
199 |
-
|
200 |
-
pretrained.activations = activations
|
201 |
-
|
202 |
-
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
203 |
-
|
204 |
-
# 32, 48, 136, 384
|
205 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
206 |
-
readout_oper[0],
|
207 |
-
Transpose(1, 2),
|
208 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
209 |
-
nn.Conv2d(
|
210 |
-
in_channels=vit_features,
|
211 |
-
out_channels=features[0],
|
212 |
-
kernel_size=1,
|
213 |
-
stride=1,
|
214 |
-
padding=0,
|
215 |
-
),
|
216 |
-
nn.ConvTranspose2d(
|
217 |
-
in_channels=features[0],
|
218 |
-
out_channels=features[0],
|
219 |
-
kernel_size=4,
|
220 |
-
stride=4,
|
221 |
-
padding=0,
|
222 |
-
bias=True,
|
223 |
-
dilation=1,
|
224 |
-
groups=1,
|
225 |
-
),
|
226 |
-
)
|
227 |
-
|
228 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
229 |
-
readout_oper[1],
|
230 |
-
Transpose(1, 2),
|
231 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
232 |
-
nn.Conv2d(
|
233 |
-
in_channels=vit_features,
|
234 |
-
out_channels=features[1],
|
235 |
-
kernel_size=1,
|
236 |
-
stride=1,
|
237 |
-
padding=0,
|
238 |
-
),
|
239 |
-
nn.ConvTranspose2d(
|
240 |
-
in_channels=features[1],
|
241 |
-
out_channels=features[1],
|
242 |
-
kernel_size=2,
|
243 |
-
stride=2,
|
244 |
-
padding=0,
|
245 |
-
bias=True,
|
246 |
-
dilation=1,
|
247 |
-
groups=1,
|
248 |
-
),
|
249 |
-
)
|
250 |
-
|
251 |
-
pretrained.act_postprocess3 = nn.Sequential(
|
252 |
-
readout_oper[2],
|
253 |
-
Transpose(1, 2),
|
254 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
255 |
-
nn.Conv2d(
|
256 |
-
in_channels=vit_features,
|
257 |
-
out_channels=features[2],
|
258 |
-
kernel_size=1,
|
259 |
-
stride=1,
|
260 |
-
padding=0,
|
261 |
-
),
|
262 |
-
)
|
263 |
-
|
264 |
-
pretrained.act_postprocess4 = nn.Sequential(
|
265 |
-
readout_oper[3],
|
266 |
-
Transpose(1, 2),
|
267 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
268 |
-
nn.Conv2d(
|
269 |
-
in_channels=vit_features,
|
270 |
-
out_channels=features[3],
|
271 |
-
kernel_size=1,
|
272 |
-
stride=1,
|
273 |
-
padding=0,
|
274 |
-
),
|
275 |
-
nn.Conv2d(
|
276 |
-
in_channels=features[3],
|
277 |
-
out_channels=features[3],
|
278 |
-
kernel_size=3,
|
279 |
-
stride=2,
|
280 |
-
padding=1,
|
281 |
-
),
|
282 |
-
)
|
283 |
-
|
284 |
-
pretrained.model.start_index = start_index
|
285 |
-
pretrained.model.patch_size = [16, 16]
|
286 |
-
|
287 |
-
# We inject this function into the VisionTransformer instances so that
|
288 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
289 |
-
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
290 |
-
pretrained.model._resize_pos_embed = types.MethodType(
|
291 |
-
_resize_pos_embed, pretrained.model
|
292 |
-
)
|
293 |
-
|
294 |
-
return pretrained
|
295 |
-
|
296 |
-
|
297 |
-
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
298 |
-
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
299 |
-
|
300 |
-
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
301 |
-
return _make_vit_b16_backbone(
|
302 |
-
model,
|
303 |
-
features=[256, 512, 1024, 1024],
|
304 |
-
hooks=hooks,
|
305 |
-
vit_features=1024,
|
306 |
-
use_readout=use_readout,
|
307 |
-
)
|
308 |
-
|
309 |
-
|
310 |
-
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
311 |
-
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
312 |
-
|
313 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
314 |
-
return _make_vit_b16_backbone(
|
315 |
-
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
316 |
-
)
|
317 |
-
|
318 |
-
|
319 |
-
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
320 |
-
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
321 |
-
|
322 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
323 |
-
return _make_vit_b16_backbone(
|
324 |
-
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
325 |
-
)
|
326 |
-
|
327 |
-
|
328 |
-
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
329 |
-
model = timm.create_model(
|
330 |
-
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
331 |
-
)
|
332 |
-
|
333 |
-
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
334 |
-
return _make_vit_b16_backbone(
|
335 |
-
model,
|
336 |
-
features=[96, 192, 384, 768],
|
337 |
-
hooks=hooks,
|
338 |
-
use_readout=use_readout,
|
339 |
-
start_index=2,
|
340 |
-
)
|
341 |
-
|
342 |
-
|
343 |
-
def _make_vit_b_rn50_backbone(
|
344 |
-
model,
|
345 |
-
features=[256, 512, 768, 768],
|
346 |
-
size=[384, 384],
|
347 |
-
hooks=[0, 1, 8, 11],
|
348 |
-
vit_features=768,
|
349 |
-
use_vit_only=False,
|
350 |
-
use_readout="ignore",
|
351 |
-
start_index=1,
|
352 |
-
):
|
353 |
-
pretrained = nn.Module()
|
354 |
-
|
355 |
-
pretrained.model = model
|
356 |
-
|
357 |
-
if use_vit_only == True:
|
358 |
-
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
359 |
-
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
360 |
-
else:
|
361 |
-
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
362 |
-
get_activation("1")
|
363 |
-
)
|
364 |
-
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
365 |
-
get_activation("2")
|
366 |
-
)
|
367 |
-
|
368 |
-
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
369 |
-
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
370 |
-
|
371 |
-
pretrained.activations = activations
|
372 |
-
|
373 |
-
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
374 |
-
|
375 |
-
if use_vit_only == True:
|
376 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
377 |
-
readout_oper[0],
|
378 |
-
Transpose(1, 2),
|
379 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
380 |
-
nn.Conv2d(
|
381 |
-
in_channels=vit_features,
|
382 |
-
out_channels=features[0],
|
383 |
-
kernel_size=1,
|
384 |
-
stride=1,
|
385 |
-
padding=0,
|
386 |
-
),
|
387 |
-
nn.ConvTranspose2d(
|
388 |
-
in_channels=features[0],
|
389 |
-
out_channels=features[0],
|
390 |
-
kernel_size=4,
|
391 |
-
stride=4,
|
392 |
-
padding=0,
|
393 |
-
bias=True,
|
394 |
-
dilation=1,
|
395 |
-
groups=1,
|
396 |
-
),
|
397 |
-
)
|
398 |
-
|
399 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
400 |
-
readout_oper[1],
|
401 |
-
Transpose(1, 2),
|
402 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
403 |
-
nn.Conv2d(
|
404 |
-
in_channels=vit_features,
|
405 |
-
out_channels=features[1],
|
406 |
-
kernel_size=1,
|
407 |
-
stride=1,
|
408 |
-
padding=0,
|
409 |
-
),
|
410 |
-
nn.ConvTranspose2d(
|
411 |
-
in_channels=features[1],
|
412 |
-
out_channels=features[1],
|
413 |
-
kernel_size=2,
|
414 |
-
stride=2,
|
415 |
-
padding=0,
|
416 |
-
bias=True,
|
417 |
-
dilation=1,
|
418 |
-
groups=1,
|
419 |
-
),
|
420 |
-
)
|
421 |
-
else:
|
422 |
-
pretrained.act_postprocess1 = nn.Sequential(
|
423 |
-
nn.Identity(), nn.Identity(), nn.Identity()
|
424 |
-
)
|
425 |
-
pretrained.act_postprocess2 = nn.Sequential(
|
426 |
-
nn.Identity(), nn.Identity(), nn.Identity()
|
427 |
-
)
|
428 |
-
|
429 |
-
pretrained.act_postprocess3 = nn.Sequential(
|
430 |
-
readout_oper[2],
|
431 |
-
Transpose(1, 2),
|
432 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
433 |
-
nn.Conv2d(
|
434 |
-
in_channels=vit_features,
|
435 |
-
out_channels=features[2],
|
436 |
-
kernel_size=1,
|
437 |
-
stride=1,
|
438 |
-
padding=0,
|
439 |
-
),
|
440 |
-
)
|
441 |
-
|
442 |
-
pretrained.act_postprocess4 = nn.Sequential(
|
443 |
-
readout_oper[3],
|
444 |
-
Transpose(1, 2),
|
445 |
-
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
446 |
-
nn.Conv2d(
|
447 |
-
in_channels=vit_features,
|
448 |
-
out_channels=features[3],
|
449 |
-
kernel_size=1,
|
450 |
-
stride=1,
|
451 |
-
padding=0,
|
452 |
-
),
|
453 |
-
nn.Conv2d(
|
454 |
-
in_channels=features[3],
|
455 |
-
out_channels=features[3],
|
456 |
-
kernel_size=3,
|
457 |
-
stride=2,
|
458 |
-
padding=1,
|
459 |
-
),
|
460 |
-
)
|
461 |
-
|
462 |
-
pretrained.model.start_index = start_index
|
463 |
-
pretrained.model.patch_size = [16, 16]
|
464 |
-
|
465 |
-
# We inject this function into the VisionTransformer instances so that
|
466 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
467 |
-
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
468 |
-
|
469 |
-
# We inject this function into the VisionTransformer instances so that
|
470 |
-
# we can use it with interpolated position embeddings without modifying the library source.
|
471 |
-
pretrained.model._resize_pos_embed = types.MethodType(
|
472 |
-
_resize_pos_embed, pretrained.model
|
473 |
-
)
|
474 |
-
|
475 |
-
return pretrained
|
476 |
-
|
477 |
-
|
478 |
-
def _make_pretrained_vitb_rn50_384(
|
479 |
-
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
480 |
-
):
|
481 |
-
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
482 |
-
|
483 |
-
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
484 |
-
return _make_vit_b_rn50_backbone(
|
485 |
-
model,
|
486 |
-
features=[256, 512, 768, 768],
|
487 |
-
size=[384, 384],
|
488 |
-
hooks=hooks,
|
489 |
-
use_vit_only=use_vit_only,
|
490 |
-
use_readout=use_readout,
|
491 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/midas/utils.py
DELETED
@@ -1,189 +0,0 @@
|
|
1 |
-
"""Utils for monoDepth."""
|
2 |
-
import sys
|
3 |
-
import re
|
4 |
-
import numpy as np
|
5 |
-
import cv2
|
6 |
-
import torch
|
7 |
-
|
8 |
-
|
9 |
-
def read_pfm(path):
|
10 |
-
"""Read pfm file.
|
11 |
-
|
12 |
-
Args:
|
13 |
-
path (str): path to file
|
14 |
-
|
15 |
-
Returns:
|
16 |
-
tuple: (data, scale)
|
17 |
-
"""
|
18 |
-
with open(path, "rb") as file:
|
19 |
-
|
20 |
-
color = None
|
21 |
-
width = None
|
22 |
-
height = None
|
23 |
-
scale = None
|
24 |
-
endian = None
|
25 |
-
|
26 |
-
header = file.readline().rstrip()
|
27 |
-
if header.decode("ascii") == "PF":
|
28 |
-
color = True
|
29 |
-
elif header.decode("ascii") == "Pf":
|
30 |
-
color = False
|
31 |
-
else:
|
32 |
-
raise Exception("Not a PFM file: " + path)
|
33 |
-
|
34 |
-
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
35 |
-
if dim_match:
|
36 |
-
width, height = list(map(int, dim_match.groups()))
|
37 |
-
else:
|
38 |
-
raise Exception("Malformed PFM header.")
|
39 |
-
|
40 |
-
scale = float(file.readline().decode("ascii").rstrip())
|
41 |
-
if scale < 0:
|
42 |
-
# little-endian
|
43 |
-
endian = "<"
|
44 |
-
scale = -scale
|
45 |
-
else:
|
46 |
-
# big-endian
|
47 |
-
endian = ">"
|
48 |
-
|
49 |
-
data = np.fromfile(file, endian + "f")
|
50 |
-
shape = (height, width, 3) if color else (height, width)
|
51 |
-
|
52 |
-
data = np.reshape(data, shape)
|
53 |
-
data = np.flipud(data)
|
54 |
-
|
55 |
-
return data, scale
|
56 |
-
|
57 |
-
|
58 |
-
def write_pfm(path, image, scale=1):
|
59 |
-
"""Write pfm file.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
path (str): pathto file
|
63 |
-
image (array): data
|
64 |
-
scale (int, optional): Scale. Defaults to 1.
|
65 |
-
"""
|
66 |
-
|
67 |
-
with open(path, "wb") as file:
|
68 |
-
color = None
|
69 |
-
|
70 |
-
if image.dtype.name != "float32":
|
71 |
-
raise Exception("Image dtype must be float32.")
|
72 |
-
|
73 |
-
image = np.flipud(image)
|
74 |
-
|
75 |
-
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
76 |
-
color = True
|
77 |
-
elif (
|
78 |
-
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
79 |
-
): # greyscale
|
80 |
-
color = False
|
81 |
-
else:
|
82 |
-
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
83 |
-
|
84 |
-
file.write("PF\n" if color else "Pf\n".encode())
|
85 |
-
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
86 |
-
|
87 |
-
endian = image.dtype.byteorder
|
88 |
-
|
89 |
-
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
90 |
-
scale = -scale
|
91 |
-
|
92 |
-
file.write("%f\n".encode() % scale)
|
93 |
-
|
94 |
-
image.tofile(file)
|
95 |
-
|
96 |
-
|
97 |
-
def read_image(path):
|
98 |
-
"""Read image and output RGB image (0-1).
|
99 |
-
|
100 |
-
Args:
|
101 |
-
path (str): path to file
|
102 |
-
|
103 |
-
Returns:
|
104 |
-
array: RGB image (0-1)
|
105 |
-
"""
|
106 |
-
img = cv2.imread(path)
|
107 |
-
|
108 |
-
if img.ndim == 2:
|
109 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
110 |
-
|
111 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
112 |
-
|
113 |
-
return img
|
114 |
-
|
115 |
-
|
116 |
-
def resize_image(img):
|
117 |
-
"""Resize image and make it fit for network.
|
118 |
-
|
119 |
-
Args:
|
120 |
-
img (array): image
|
121 |
-
|
122 |
-
Returns:
|
123 |
-
tensor: data ready for network
|
124 |
-
"""
|
125 |
-
height_orig = img.shape[0]
|
126 |
-
width_orig = img.shape[1]
|
127 |
-
|
128 |
-
if width_orig > height_orig:
|
129 |
-
scale = width_orig / 384
|
130 |
-
else:
|
131 |
-
scale = height_orig / 384
|
132 |
-
|
133 |
-
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
134 |
-
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
135 |
-
|
136 |
-
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
137 |
-
|
138 |
-
img_resized = (
|
139 |
-
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
140 |
-
)
|
141 |
-
img_resized = img_resized.unsqueeze(0)
|
142 |
-
|
143 |
-
return img_resized
|
144 |
-
|
145 |
-
|
146 |
-
def resize_depth(depth, width, height):
|
147 |
-
"""Resize depth map and bring to CPU (numpy).
|
148 |
-
|
149 |
-
Args:
|
150 |
-
depth (tensor): depth
|
151 |
-
width (int): image width
|
152 |
-
height (int): image height
|
153 |
-
|
154 |
-
Returns:
|
155 |
-
array: processed depth
|
156 |
-
"""
|
157 |
-
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
158 |
-
|
159 |
-
depth_resized = cv2.resize(
|
160 |
-
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
161 |
-
)
|
162 |
-
|
163 |
-
return depth_resized
|
164 |
-
|
165 |
-
def write_depth(path, depth, bits=1):
|
166 |
-
"""Write depth map to pfm and png file.
|
167 |
-
|
168 |
-
Args:
|
169 |
-
path (str): filepath without extension
|
170 |
-
depth (array): depth
|
171 |
-
"""
|
172 |
-
write_pfm(path + ".pfm", depth.astype(np.float32))
|
173 |
-
|
174 |
-
depth_min = depth.min()
|
175 |
-
depth_max = depth.max()
|
176 |
-
|
177 |
-
max_val = (2**(8*bits))-1
|
178 |
-
|
179 |
-
if depth_max - depth_min > np.finfo("float").eps:
|
180 |
-
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
181 |
-
else:
|
182 |
-
out = np.zeros(depth.shape, dtype=depth.type)
|
183 |
-
|
184 |
-
if bits == 1:
|
185 |
-
cv2.imwrite(path + ".png", out.astype("uint8"))
|
186 |
-
elif bits == 2:
|
187 |
-
cv2.imwrite(path + ".png", out.astype("uint16"))
|
188 |
-
|
189 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
annotator/util.py
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import cv2
|
5 |
-
import os
|
6 |
-
import PIL
|
7 |
-
|
8 |
-
annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts')
|
9 |
-
|
10 |
-
def HWC3(x):
|
11 |
-
assert x.dtype == np.uint8
|
12 |
-
if x.ndim == 2:
|
13 |
-
x = x[:, :, None]
|
14 |
-
assert x.ndim == 3
|
15 |
-
H, W, C = x.shape
|
16 |
-
assert C == 1 or C == 3 or C == 4
|
17 |
-
if C == 3:
|
18 |
-
return x
|
19 |
-
if C == 1:
|
20 |
-
return np.concatenate([x, x, x], axis=2)
|
21 |
-
if C == 4:
|
22 |
-
color = x[:, :, 0:3].astype(np.float32)
|
23 |
-
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
24 |
-
y = color * alpha + 255.0 * (1.0 - alpha)
|
25 |
-
y = y.clip(0, 255).astype(np.uint8)
|
26 |
-
return y
|
27 |
-
|
28 |
-
|
29 |
-
def resize_image(input_image, resolution, short = False, interpolation=None):
|
30 |
-
if isinstance(input_image,PIL.Image.Image):
|
31 |
-
mode = 'pil'
|
32 |
-
W,H = input_image.size
|
33 |
-
|
34 |
-
elif isinstance(input_image,np.ndarray):
|
35 |
-
mode = 'cv2'
|
36 |
-
H, W, _ = input_image.shape
|
37 |
-
|
38 |
-
H = float(H)
|
39 |
-
W = float(W)
|
40 |
-
if short:
|
41 |
-
k = float(resolution) / min(H, W) # k>1 放大, k<1 缩小
|
42 |
-
else:
|
43 |
-
k = float(resolution) / max(H, W) # k>1 放大, k<1 缩小
|
44 |
-
H *= k
|
45 |
-
W *= k
|
46 |
-
H = int(np.round(H / 64.0)) * 64
|
47 |
-
W = int(np.round(W / 64.0)) * 64
|
48 |
-
|
49 |
-
if mode == 'cv2':
|
50 |
-
if interpolation is None:
|
51 |
-
interpolation = cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA
|
52 |
-
img = cv2.resize(input_image, (W, H), interpolation=interpolation)
|
53 |
-
|
54 |
-
elif mode == 'pil':
|
55 |
-
if interpolation is None:
|
56 |
-
interpolation = PIL.Image.LANCZOS if k > 1 else PIL.Image.BILINEAR
|
57 |
-
img = input_image.resize((W, H), resample=interpolation)
|
58 |
-
|
59 |
-
return img
|
60 |
-
|
61 |
-
# def resize_image(input_image, resolution):
|
62 |
-
# H, W, C = input_image.shape
|
63 |
-
# H = float(H)
|
64 |
-
# W = float(W)
|
65 |
-
# k = float(resolution) / min(H, W)
|
66 |
-
# H *= k
|
67 |
-
# W *= k
|
68 |
-
# H = int(np.round(H / 64.0)) * 64
|
69 |
-
# W = int(np.round(W / 64.0)) * 64
|
70 |
-
# img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
71 |
-
# return img
|
72 |
-
|
73 |
-
|
74 |
-
def nms(x, t, s):
|
75 |
-
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
76 |
-
|
77 |
-
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
78 |
-
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
79 |
-
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
80 |
-
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
81 |
-
|
82 |
-
y = np.zeros_like(x)
|
83 |
-
|
84 |
-
for f in [f1, f2, f3, f4]:
|
85 |
-
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
86 |
-
|
87 |
-
z = np.zeros_like(y, dtype=np.uint8)
|
88 |
-
z[y > t] = 255
|
89 |
-
return z
|
90 |
-
|
91 |
-
|
92 |
-
def make_noise_disk(H, W, C, F):
|
93 |
-
noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
|
94 |
-
noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC)
|
95 |
-
noise = noise[F: F + H, F: F + W]
|
96 |
-
noise -= np.min(noise)
|
97 |
-
noise /= np.max(noise)
|
98 |
-
if C == 1:
|
99 |
-
noise = noise[:, :, None]
|
100 |
-
return noise
|
101 |
-
|
102 |
-
|
103 |
-
def min_max_norm(x):
|
104 |
-
x -= np.min(x)
|
105 |
-
x /= np.maximum(np.max(x), 1e-5)
|
106 |
-
return x
|
107 |
-
|
108 |
-
|
109 |
-
def safe_step(x, step=2):
|
110 |
-
y = x.astype(np.float32) * float(step + 1)
|
111 |
-
y = y.astype(np.int32).astype(np.float32) / float(step)
|
112 |
-
return y
|
113 |
-
|
114 |
-
|
115 |
-
def img2mask(img, H, W, low=10, high=90):
|
116 |
-
assert img.ndim == 3 or img.ndim == 2
|
117 |
-
assert img.dtype == np.uint8
|
118 |
-
|
119 |
-
if img.ndim == 3:
|
120 |
-
y = img[:, :, random.randrange(0, img.shape[2])]
|
121 |
-
else:
|
122 |
-
y = img
|
123 |
-
|
124 |
-
y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC)
|
125 |
-
|
126 |
-
if random.uniform(0, 1) < 0.5:
|
127 |
-
y = 255 - y
|
128 |
-
|
129 |
-
return y < np.percentile(y, random.randrange(low, high))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -2,158 +2,126 @@ import spaces
|
|
2 |
import random
|
3 |
import torch
|
4 |
import cv2
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
from huggingface_hub import snapshot_download
|
8 |
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
|
9 |
-
from
|
10 |
-
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
|
11 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
12 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
13 |
-
from
|
14 |
-
from diffusers import AutoencoderKL
|
15 |
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
16 |
from diffusers import EulerDiscreteScheduler
|
17 |
from PIL import Image
|
18 |
-
from
|
19 |
-
from
|
20 |
|
21 |
|
22 |
device = "cuda"
|
23 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
24 |
-
|
25 |
-
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
|
26 |
|
27 |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
28 |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
29 |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
30 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
31 |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
text_encoder=text_encoder,
|
39 |
-
tokenizer=tokenizer,
|
40 |
-
unet=unet,
|
41 |
-
scheduler=scheduler,
|
42 |
-
|
|
|
|
|
43 |
)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
tokenizer=tokenizer,
|
50 |
-
unet=unet,
|
51 |
-
scheduler=scheduler,
|
52 |
-
force_zeros_for_empty_prompt=False
|
53 |
-
)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
np_image = image.copy()
|
58 |
-
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
|
59 |
-
np_image = np_image[:, :, None]
|
60 |
-
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
|
61 |
-
np_image = HWC3(np_image)
|
62 |
-
return Image.fromarray(np_image)
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
MAX_SEED = np.iinfo(np.int32).max
|
75 |
MAX_IMAGE_SIZE = 1024
|
76 |
|
77 |
@spaces.GPU
|
78 |
-
def
|
79 |
image = None,
|
80 |
negative_prompt = "nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
|
81 |
-
seed =
|
82 |
randomize_seed = False,
|
83 |
guidance_scale = 6.0,
|
84 |
-
num_inference_steps = 50
|
85 |
-
controlnet_conditioning_scale = 0.7,
|
86 |
-
control_guidance_end = 0.9,
|
87 |
-
strength = 1.0
|
88 |
):
|
89 |
if randomize_seed:
|
90 |
seed = random.randint(0, MAX_SEED)
|
91 |
generator = torch.Generator().manual_seed(seed)
|
92 |
-
|
93 |
-
pipe =
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
num_images_per_prompt=1,
|
106 |
-
generator=generator,
|
107 |
-
).images[0]
|
108 |
-
return [condi_img, image], seed
|
109 |
|
110 |
-
@spaces.GPU
|
111 |
-
def infer_canny(prompt,
|
112 |
-
image = None,
|
113 |
-
negative_prompt = "nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
|
114 |
-
seed = 397886929,
|
115 |
-
randomize_seed = False,
|
116 |
-
guidance_scale = 6.0,
|
117 |
-
num_inference_steps = 50,
|
118 |
-
controlnet_conditioning_scale = 0.7,
|
119 |
-
control_guidance_end = 0.9,
|
120 |
-
strength = 1.0
|
121 |
-
):
|
122 |
-
if randomize_seed:
|
123 |
-
seed = random.randint(0, MAX_SEED)
|
124 |
-
generator = torch.Generator().manual_seed(seed)
|
125 |
-
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
126 |
-
pipe = pipe_canny.to("cuda")
|
127 |
-
condi_img = process_canny_condition(np.array(init_image))
|
128 |
image = pipe(
|
129 |
-
prompt= prompt
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
strength= strength ,
|
134 |
-
control_image = condi_img,
|
135 |
-
negative_prompt= negative_prompt ,
|
136 |
num_inference_steps= num_inference_steps,
|
137 |
-
guidance_scale= guidance_scale,
|
138 |
-
num_images_per_prompt=1,
|
139 |
-
generator=generator,
|
|
|
|
|
140 |
).images[0]
|
141 |
-
return [condi_img, image], seed
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
"image/woman_1.png"],
|
146 |
-
["全景,一只可爱的白色小狗坐在杯子里,看向镜头,动漫风格,3d渲染,辛烷值渲染",
|
147 |
-
"image/dog.png"]
|
148 |
-
]
|
149 |
|
150 |
-
|
151 |
-
["
|
152 |
-
|
153 |
-
["一只颜色鲜艳的小鸟,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K",
|
154 |
-
"image/bird.png"]
|
155 |
]
|
156 |
|
|
|
157 |
css="""
|
158 |
#col-left {
|
159 |
margin: 0 auto;
|
@@ -190,7 +158,6 @@ with gr.Blocks(css=css) as Kolors:
|
|
190 |
label="Negative prompt",
|
191 |
placeholder="Enter a negative prompt",
|
192 |
visible=True,
|
193 |
-
value="nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯"
|
194 |
)
|
195 |
seed = gr.Slider(
|
196 |
label="Seed",
|
@@ -206,73 +173,35 @@ with gr.Blocks(css=css) as Kolors:
|
|
206 |
minimum=0.0,
|
207 |
maximum=10.0,
|
208 |
step=0.1,
|
209 |
-
value=
|
210 |
)
|
211 |
num_inference_steps = gr.Slider(
|
212 |
label="Number of inference steps",
|
213 |
minimum=10,
|
214 |
maximum=50,
|
215 |
step=1,
|
216 |
-
value=
|
217 |
-
)
|
218 |
-
with gr.Row():
|
219 |
-
controlnet_conditioning_scale = gr.Slider(
|
220 |
-
label="Controlnet Conditioning Scale",
|
221 |
-
minimum=0.0,
|
222 |
-
maximum=1.0,
|
223 |
-
step=0.1,
|
224 |
-
value=0.7,
|
225 |
-
)
|
226 |
-
control_guidance_end = gr.Slider(
|
227 |
-
label="Control Guidance End",
|
228 |
-
minimum=0.0,
|
229 |
-
maximum=1.0,
|
230 |
-
step=0.1,
|
231 |
-
value=0.9,
|
232 |
-
)
|
233 |
-
with gr.Row():
|
234 |
-
strength = gr.Slider(
|
235 |
-
label="Strength",
|
236 |
-
minimum=0.0,
|
237 |
-
maximum=1.0,
|
238 |
-
step=0.1,
|
239 |
-
value=1.0,
|
240 |
)
|
241 |
with gr.Row():
|
242 |
-
|
243 |
-
depth_button = gr.Button("Depth", elem_id="button")
|
244 |
|
245 |
with gr.Column(elem_id="col-right"):
|
246 |
-
result = gr.
|
247 |
seed_used = gr.Number(label="Seed Used")
|
248 |
|
249 |
with gr.Row():
|
250 |
gr.Examples(
|
251 |
-
fn =
|
252 |
-
examples =
|
253 |
inputs = [prompt, image],
|
254 |
outputs = [result, seed_used],
|
255 |
-
label = "Canny"
|
256 |
-
)
|
257 |
-
with gr.Row():
|
258 |
-
gr.Examples(
|
259 |
-
fn = infer_depth,
|
260 |
-
examples = depth_examples,
|
261 |
-
inputs = [prompt, image],
|
262 |
-
outputs = [result, seed_used],
|
263 |
-
label = "Depth"
|
264 |
)
|
265 |
|
266 |
-
|
267 |
-
fn =
|
268 |
-
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps
|
269 |
outputs = [result, seed_used]
|
270 |
)
|
271 |
|
272 |
-
depth_button.click(
|
273 |
-
fn = infer_depth,
|
274 |
-
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
275 |
-
outputs = [result, seed_used]
|
276 |
-
)
|
277 |
|
278 |
Kolors.queue().launch(debug=True)
|
|
|
2 |
import random
|
3 |
import torch
|
4 |
import cv2
|
5 |
+
import insightface
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
from huggingface_hub import snapshot_download
|
9 |
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
|
10 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
|
|
|
11 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
12 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
13 |
+
from diffusers import AutoencoderKL
|
|
|
14 |
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
15 |
from diffusers import EulerDiscreteScheduler
|
16 |
from PIL import Image
|
17 |
+
from insightface.app import FaceAnalysis
|
18 |
+
from insightface.data import get_image as ins_get_image
|
19 |
|
20 |
|
21 |
device = "cuda"
|
22 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
23 |
+
ckpt_dir_faceid = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus")
|
|
|
24 |
|
25 |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
26 |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
27 |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
28 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
29 |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
30 |
+
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True)
|
31 |
+
clip_image_encoder.to(device)
|
32 |
+
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336)
|
33 |
+
|
34 |
+
pipe = StableDiffusionXLPipeline(
|
35 |
+
vae = vae,
|
36 |
+
text_encoder = text_encoder,
|
37 |
+
tokenizer = tokenizer,
|
38 |
+
unet = unet,
|
39 |
+
scheduler = scheduler,
|
40 |
+
face_clip_encoder = clip_image_encoder,
|
41 |
+
face_clip_processor = clip_image_processor,
|
42 |
+
force_zeros_for_empty_prompt = False,
|
43 |
)
|
44 |
|
45 |
+
class FaceInfoGenerator():
|
46 |
+
def __init__(self, root_dir = "./"):
|
47 |
+
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
48 |
+
self.app.prepare(ctx_id = 0, det_size = (640, 640))
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
def get_faceinfo_one_img(self, face_image):
|
51 |
+
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
if len(face_info) == 0:
|
54 |
+
face_info = None
|
55 |
+
else:
|
56 |
+
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
|
57 |
+
return face_info
|
58 |
|
59 |
+
def face_bbox_to_square(bbox):
|
60 |
+
## l, t, r, b to square l, t, r, b
|
61 |
+
l,t,r,b = bbox
|
62 |
+
cent_x = (l + r) / 2
|
63 |
+
cent_y = (t + b) / 2
|
64 |
+
w, h = r - l, b - t
|
65 |
+
r = max(w, h) / 2
|
66 |
+
|
67 |
+
l0 = cent_x - r
|
68 |
+
r0 = cent_x + r
|
69 |
+
t0 = cent_y - r
|
70 |
+
b0 = cent_y + r
|
71 |
+
|
72 |
+
return [l0, t0, r0, b0]
|
73 |
|
74 |
MAX_SEED = np.iinfo(np.int32).max
|
75 |
MAX_IMAGE_SIZE = 1024
|
76 |
|
77 |
@spaces.GPU
|
78 |
+
def infer(prompt,
|
79 |
image = None,
|
80 |
negative_prompt = "nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
|
81 |
+
seed = 66,
|
82 |
randomize_seed = False,
|
83 |
guidance_scale = 6.0,
|
84 |
+
num_inference_steps = 50
|
|
|
|
|
|
|
85 |
):
|
86 |
if randomize_seed:
|
87 |
seed = random.randint(0, MAX_SEED)
|
88 |
generator = torch.Generator().manual_seed(seed)
|
89 |
+
pipe = pipe.to(device)
|
90 |
+
pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device = device)
|
91 |
+
scale = 0.8
|
92 |
+
pipe.set_face_fidelity_scale(scale)
|
93 |
+
|
94 |
+
face_info_generator = FaceInfoGenerator(root_dir = "./")
|
95 |
+
face_info = face_info_generator.get_faceinfo_one_img(image)
|
96 |
+
face_bbox_square = face_bbox_to_square(face_info["bbox"])
|
97 |
+
crop_image = image.crop(face_bbox_square)
|
98 |
+
crop_image = crop_image.resize((336, 336))
|
99 |
+
crop_image = [crop_image]
|
100 |
+
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
|
101 |
+
face_embeds = face_embeds.to(device, dtype = torch.float16)
|
|
|
|
|
|
|
|
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
image = pipe(
|
104 |
+
prompt = prompt,
|
105 |
+
negative_prompt = negative_prompt,
|
106 |
+
height = 1024,
|
107 |
+
width = 1024,
|
|
|
|
|
|
|
108 |
num_inference_steps= num_inference_steps,
|
109 |
+
guidance_scale = guidance_scale,
|
110 |
+
num_images_per_prompt = 1,
|
111 |
+
generator = generator,
|
112 |
+
face_crop_image = crop_image,
|
113 |
+
face_insightface_embeds = face_embeds
|
114 |
).images[0]
|
|
|
115 |
|
116 |
+
return image, seed
|
117 |
+
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
examples = [
|
120 |
+
["穿着晚礼服,在星光下的晚宴场景中,烛光闪闪,整个场景洋溢着浪漫而奢华的氛围", "image/image1.png"],
|
121 |
+
["西部牛仔,牛仔帽,荒野大镖客,背景是西部小镇,仙人掌,,日落余晖, 暖色调, 使用XT4胶片拍摄, 噪点, 晕影, 柯达胶卷,复古", "image/image2.png"]
|
|
|
|
|
122 |
]
|
123 |
|
124 |
+
|
125 |
css="""
|
126 |
#col-left {
|
127 |
margin: 0 auto;
|
|
|
158 |
label="Negative prompt",
|
159 |
placeholder="Enter a negative prompt",
|
160 |
visible=True,
|
|
|
161 |
)
|
162 |
seed = gr.Slider(
|
163 |
label="Seed",
|
|
|
173 |
minimum=0.0,
|
174 |
maximum=10.0,
|
175 |
step=0.1,
|
176 |
+
value=5.0,
|
177 |
)
|
178 |
num_inference_steps = gr.Slider(
|
179 |
label="Number of inference steps",
|
180 |
minimum=10,
|
181 |
maximum=50,
|
182 |
step=1,
|
183 |
+
value=25,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
)
|
185 |
with gr.Row():
|
186 |
+
button = gr.Button("Run", elem_id="button")
|
|
|
187 |
|
188 |
with gr.Column(elem_id="col-right"):
|
189 |
+
result = gr.Image(label="Result", show_label=False)
|
190 |
seed_used = gr.Number(label="Seed Used")
|
191 |
|
192 |
with gr.Row():
|
193 |
gr.Examples(
|
194 |
+
fn = infer,
|
195 |
+
examples = examples,
|
196 |
inputs = [prompt, image],
|
197 |
outputs = [result, seed_used],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
)
|
199 |
|
200 |
+
button.click(
|
201 |
+
fn = infer,
|
202 |
+
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
|
203 |
outputs = [result, seed_used]
|
204 |
)
|
205 |
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
Kolors.queue().launch(debug=True)
|
assets/title.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
2 |
<div>
|
3 |
-
<h1>Kolors-
|
4 |
-
<span>
|
5 |
<br>
|
6 |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
7 |
-
<a href="https://github.com/Kwai-Kolors/Kolors/tree/master/
|
8 |
<a href="https://kwai-kolors.github.io/"><img src="https://img.shields.io/static/v1?label=Team%20Page&message=Page&color=green"></a>  
|
9 |
<a href="https://github.com/Kwai-Kolors/Kolors/blob/master/imgs/Kolors_paper.pdf"><img src="https://img.shields.io/static/v1?label=Tech Report&message=Kolors&color=red"></a>  
|
10 |
<a href="https://klingai.kuaishou.com/"><img src="https://img.shields.io/static/v1?label=Official Website&message=Page&color=green"></a>
|
|
|
1 |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
2 |
<div>
|
3 |
+
<h1>Kolors-FaceID</h1>
|
4 |
+
<span>Kolors-IP-Adapter-FaceID-Plus based on Kolors-Basemodel.</span>
|
5 |
<br>
|
6 |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
7 |
+
<a href="https://github.com/Kwai-Kolors/Kolors/tree/master/ipadapter_FaceID"><img src="https://img.shields.io/static/v1?label=Kolors Code&message=Github&color=blue&logo=github-pages"></a>  
|
8 |
<a href="https://kwai-kolors.github.io/"><img src="https://img.shields.io/static/v1?label=Team%20Page&message=Page&color=green"></a>  
|
9 |
<a href="https://github.com/Kwai-Kolors/Kolors/blob/master/imgs/Kolors_paper.pdf"><img src="https://img.shields.io/static/v1?label=Tech Report&message=Kolors&color=red"></a>  
|
10 |
<a href="https://klingai.kuaishou.com/"><img src="https://img.shields.io/static/v1?label=Official Website&message=Page&color=green"></a>
|
basicsr/__init__.py
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
# https://github.com/xinntao/BasicSR
|
2 |
-
# flake8: noqa
|
3 |
-
from .archs import *
|
4 |
-
from .data import *
|
5 |
-
from .losses import *
|
6 |
-
from .metrics import *
|
7 |
-
from .models import *
|
8 |
-
from .ops import *
|
9 |
-
from .test import *
|
10 |
-
from .train import *
|
11 |
-
from .utils import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/__init__.py
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
import importlib
|
2 |
-
from copy import deepcopy
|
3 |
-
from os import path as osp
|
4 |
-
|
5 |
-
from basicsr.utils import get_root_logger, scandir
|
6 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
7 |
-
|
8 |
-
__all__ = ['build_network']
|
9 |
-
|
10 |
-
# automatically scan and import arch modules for registry
|
11 |
-
# scan all the files under the 'archs' folder and collect files ending with '_arch.py'
|
12 |
-
arch_folder = osp.dirname(osp.abspath(__file__))
|
13 |
-
arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
|
14 |
-
# import all the arch modules
|
15 |
-
_arch_modules = [importlib.import_module(f'basicsr.archs.{file_name}') for file_name in arch_filenames]
|
16 |
-
|
17 |
-
|
18 |
-
def build_network(opt):
|
19 |
-
opt = deepcopy(opt)
|
20 |
-
network_type = opt.pop('type')
|
21 |
-
net = ARCH_REGISTRY.get(network_type)(**opt)
|
22 |
-
logger = get_root_logger()
|
23 |
-
logger.info(f'Network [{net.__class__.__name__}] is created.')
|
24 |
-
return net
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/arch_util.py
DELETED
@@ -1,313 +0,0 @@
|
|
1 |
-
import collections.abc
|
2 |
-
import math
|
3 |
-
import torch
|
4 |
-
import torchvision
|
5 |
-
import warnings
|
6 |
-
from distutils.version import LooseVersion
|
7 |
-
from itertools import repeat
|
8 |
-
from torch import nn as nn
|
9 |
-
from torch.nn import functional as F
|
10 |
-
from torch.nn import init as init
|
11 |
-
from torch.nn.modules.batchnorm import _BatchNorm
|
12 |
-
|
13 |
-
from basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv
|
14 |
-
from basicsr.utils import get_root_logger
|
15 |
-
|
16 |
-
|
17 |
-
@torch.no_grad()
|
18 |
-
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
19 |
-
"""Initialize network weights.
|
20 |
-
|
21 |
-
Args:
|
22 |
-
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
23 |
-
scale (float): Scale initialized weights, especially for residual
|
24 |
-
blocks. Default: 1.
|
25 |
-
bias_fill (float): The value to fill bias. Default: 0
|
26 |
-
kwargs (dict): Other arguments for initialization function.
|
27 |
-
"""
|
28 |
-
if not isinstance(module_list, list):
|
29 |
-
module_list = [module_list]
|
30 |
-
for module in module_list:
|
31 |
-
for m in module.modules():
|
32 |
-
if isinstance(m, nn.Conv2d):
|
33 |
-
init.kaiming_normal_(m.weight, **kwargs)
|
34 |
-
m.weight.data *= scale
|
35 |
-
if m.bias is not None:
|
36 |
-
m.bias.data.fill_(bias_fill)
|
37 |
-
elif isinstance(m, nn.Linear):
|
38 |
-
init.kaiming_normal_(m.weight, **kwargs)
|
39 |
-
m.weight.data *= scale
|
40 |
-
if m.bias is not None:
|
41 |
-
m.bias.data.fill_(bias_fill)
|
42 |
-
elif isinstance(m, _BatchNorm):
|
43 |
-
init.constant_(m.weight, 1)
|
44 |
-
if m.bias is not None:
|
45 |
-
m.bias.data.fill_(bias_fill)
|
46 |
-
|
47 |
-
|
48 |
-
def make_layer(basic_block, num_basic_block, **kwarg):
|
49 |
-
"""Make layers by stacking the same blocks.
|
50 |
-
|
51 |
-
Args:
|
52 |
-
basic_block (nn.module): nn.module class for basic block.
|
53 |
-
num_basic_block (int): number of blocks.
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
nn.Sequential: Stacked blocks in nn.Sequential.
|
57 |
-
"""
|
58 |
-
layers = []
|
59 |
-
for _ in range(num_basic_block):
|
60 |
-
layers.append(basic_block(**kwarg))
|
61 |
-
return nn.Sequential(*layers)
|
62 |
-
|
63 |
-
|
64 |
-
class ResidualBlockNoBN(nn.Module):
|
65 |
-
"""Residual block without BN.
|
66 |
-
|
67 |
-
Args:
|
68 |
-
num_feat (int): Channel number of intermediate features.
|
69 |
-
Default: 64.
|
70 |
-
res_scale (float): Residual scale. Default: 1.
|
71 |
-
pytorch_init (bool): If set to True, use pytorch default init,
|
72 |
-
otherwise, use default_init_weights. Default: False.
|
73 |
-
"""
|
74 |
-
|
75 |
-
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
76 |
-
super(ResidualBlockNoBN, self).__init__()
|
77 |
-
self.res_scale = res_scale
|
78 |
-
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
79 |
-
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
80 |
-
self.relu = nn.ReLU(inplace=True)
|
81 |
-
|
82 |
-
if not pytorch_init:
|
83 |
-
default_init_weights([self.conv1, self.conv2], 0.1)
|
84 |
-
|
85 |
-
def forward(self, x):
|
86 |
-
identity = x
|
87 |
-
out = self.conv2(self.relu(self.conv1(x)))
|
88 |
-
return identity + out * self.res_scale
|
89 |
-
|
90 |
-
|
91 |
-
class Upsample(nn.Sequential):
|
92 |
-
"""Upsample module.
|
93 |
-
|
94 |
-
Args:
|
95 |
-
scale (int): Scale factor. Supported scales: 2^n and 3.
|
96 |
-
num_feat (int): Channel number of intermediate features.
|
97 |
-
"""
|
98 |
-
|
99 |
-
def __init__(self, scale, num_feat):
|
100 |
-
m = []
|
101 |
-
if (scale & (scale - 1)) == 0: # scale = 2^n
|
102 |
-
for _ in range(int(math.log(scale, 2))):
|
103 |
-
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
104 |
-
m.append(nn.PixelShuffle(2))
|
105 |
-
elif scale == 3:
|
106 |
-
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
107 |
-
m.append(nn.PixelShuffle(3))
|
108 |
-
else:
|
109 |
-
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
|
110 |
-
super(Upsample, self).__init__(*m)
|
111 |
-
|
112 |
-
|
113 |
-
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
|
114 |
-
"""Warp an image or feature map with optical flow.
|
115 |
-
|
116 |
-
Args:
|
117 |
-
x (Tensor): Tensor with size (n, c, h, w).
|
118 |
-
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
119 |
-
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
120 |
-
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
121 |
-
Default: 'zeros'.
|
122 |
-
align_corners (bool): Before pytorch 1.3, the default value is
|
123 |
-
align_corners=True. After pytorch 1.3, the default value is
|
124 |
-
align_corners=False. Here, we use the True as default.
|
125 |
-
|
126 |
-
Returns:
|
127 |
-
Tensor: Warped image or feature map.
|
128 |
-
"""
|
129 |
-
assert x.size()[-2:] == flow.size()[1:3]
|
130 |
-
_, _, h, w = x.size()
|
131 |
-
# create mesh grid
|
132 |
-
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
|
133 |
-
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
134 |
-
grid.requires_grad = False
|
135 |
-
|
136 |
-
vgrid = grid + flow
|
137 |
-
# scale grid to [-1,1]
|
138 |
-
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
139 |
-
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
140 |
-
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
141 |
-
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
|
142 |
-
|
143 |
-
# TODO, what if align_corners=False
|
144 |
-
return output
|
145 |
-
|
146 |
-
|
147 |
-
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
|
148 |
-
"""Resize a flow according to ratio or shape.
|
149 |
-
|
150 |
-
Args:
|
151 |
-
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
152 |
-
size_type (str): 'ratio' or 'shape'.
|
153 |
-
sizes (list[int | float]): the ratio for resizing or the final output
|
154 |
-
shape.
|
155 |
-
1) The order of ratio should be [ratio_h, ratio_w]. For
|
156 |
-
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
157 |
-
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
158 |
-
ratio > 1.0).
|
159 |
-
2) The order of output_size should be [out_h, out_w].
|
160 |
-
interp_mode (str): The mode of interpolation for resizing.
|
161 |
-
Default: 'bilinear'.
|
162 |
-
align_corners (bool): Whether align corners. Default: False.
|
163 |
-
|
164 |
-
Returns:
|
165 |
-
Tensor: Resized flow.
|
166 |
-
"""
|
167 |
-
_, _, flow_h, flow_w = flow.size()
|
168 |
-
if size_type == 'ratio':
|
169 |
-
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
170 |
-
elif size_type == 'shape':
|
171 |
-
output_h, output_w = sizes[0], sizes[1]
|
172 |
-
else:
|
173 |
-
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
|
174 |
-
|
175 |
-
input_flow = flow.clone()
|
176 |
-
ratio_h = output_h / flow_h
|
177 |
-
ratio_w = output_w / flow_w
|
178 |
-
input_flow[:, 0, :, :] *= ratio_w
|
179 |
-
input_flow[:, 1, :, :] *= ratio_h
|
180 |
-
resized_flow = F.interpolate(
|
181 |
-
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
|
182 |
-
return resized_flow
|
183 |
-
|
184 |
-
|
185 |
-
# TODO: may write a cpp file
|
186 |
-
def pixel_unshuffle(x, scale):
|
187 |
-
""" Pixel unshuffle.
|
188 |
-
|
189 |
-
Args:
|
190 |
-
x (Tensor): Input feature with shape (b, c, hh, hw).
|
191 |
-
scale (int): Downsample ratio.
|
192 |
-
|
193 |
-
Returns:
|
194 |
-
Tensor: the pixel unshuffled feature.
|
195 |
-
"""
|
196 |
-
b, c, hh, hw = x.size()
|
197 |
-
out_channel = c * (scale**2)
|
198 |
-
assert hh % scale == 0 and hw % scale == 0
|
199 |
-
h = hh // scale
|
200 |
-
w = hw // scale
|
201 |
-
x_view = x.view(b, c, h, scale, w, scale)
|
202 |
-
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
203 |
-
|
204 |
-
|
205 |
-
class DCNv2Pack(ModulatedDeformConvPack):
|
206 |
-
"""Modulated deformable conv for deformable alignment.
|
207 |
-
|
208 |
-
Different from the official DCNv2Pack, which generates offsets and masks
|
209 |
-
from the preceding features, this DCNv2Pack takes another different
|
210 |
-
features to generate offsets and masks.
|
211 |
-
|
212 |
-
``Paper: Delving Deep into Deformable Alignment in Video Super-Resolution``
|
213 |
-
"""
|
214 |
-
|
215 |
-
def forward(self, x, feat):
|
216 |
-
out = self.conv_offset(feat)
|
217 |
-
o1, o2, mask = torch.chunk(out, 3, dim=1)
|
218 |
-
offset = torch.cat((o1, o2), dim=1)
|
219 |
-
mask = torch.sigmoid(mask)
|
220 |
-
|
221 |
-
offset_absmean = torch.mean(torch.abs(offset))
|
222 |
-
if offset_absmean > 50:
|
223 |
-
logger = get_root_logger()
|
224 |
-
logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.')
|
225 |
-
|
226 |
-
if LooseVersion(torchvision.__version__) >= LooseVersion('0.9.0'):
|
227 |
-
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
|
228 |
-
self.dilation, mask)
|
229 |
-
else:
|
230 |
-
return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding,
|
231 |
-
self.dilation, self.groups, self.deformable_groups)
|
232 |
-
|
233 |
-
|
234 |
-
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
235 |
-
# From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
236 |
-
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
237 |
-
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
238 |
-
def norm_cdf(x):
|
239 |
-
# Computes standard normal cumulative distribution function
|
240 |
-
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
241 |
-
|
242 |
-
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
243 |
-
warnings.warn(
|
244 |
-
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
|
245 |
-
'The distribution of values may be incorrect.',
|
246 |
-
stacklevel=2)
|
247 |
-
|
248 |
-
with torch.no_grad():
|
249 |
-
# Values are generated by using a truncated uniform distribution and
|
250 |
-
# then using the inverse CDF for the normal distribution.
|
251 |
-
# Get upper and lower cdf values
|
252 |
-
low = norm_cdf((a - mean) / std)
|
253 |
-
up = norm_cdf((b - mean) / std)
|
254 |
-
|
255 |
-
# Uniformly fill tensor with values from [low, up], then translate to
|
256 |
-
# [2l-1, 2u-1].
|
257 |
-
tensor.uniform_(2 * low - 1, 2 * up - 1)
|
258 |
-
|
259 |
-
# Use inverse cdf transform for normal distribution to get truncated
|
260 |
-
# standard normal
|
261 |
-
tensor.erfinv_()
|
262 |
-
|
263 |
-
# Transform to proper mean, std
|
264 |
-
tensor.mul_(std * math.sqrt(2.))
|
265 |
-
tensor.add_(mean)
|
266 |
-
|
267 |
-
# Clamp to ensure it's in the proper range
|
268 |
-
tensor.clamp_(min=a, max=b)
|
269 |
-
return tensor
|
270 |
-
|
271 |
-
|
272 |
-
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
273 |
-
r"""Fills the input Tensor with values drawn from a truncated
|
274 |
-
normal distribution.
|
275 |
-
|
276 |
-
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
277 |
-
|
278 |
-
The values are effectively drawn from the
|
279 |
-
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
280 |
-
with values outside :math:`[a, b]` redrawn until they are within
|
281 |
-
the bounds. The method used for generating the random values works
|
282 |
-
best when :math:`a \leq \text{mean} \leq b`.
|
283 |
-
|
284 |
-
Args:
|
285 |
-
tensor: an n-dimensional `torch.Tensor`
|
286 |
-
mean: the mean of the normal distribution
|
287 |
-
std: the standard deviation of the normal distribution
|
288 |
-
a: the minimum cutoff value
|
289 |
-
b: the maximum cutoff value
|
290 |
-
|
291 |
-
Examples:
|
292 |
-
>>> w = torch.empty(3, 5)
|
293 |
-
>>> nn.init.trunc_normal_(w)
|
294 |
-
"""
|
295 |
-
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
296 |
-
|
297 |
-
|
298 |
-
# From PyTorch
|
299 |
-
def _ntuple(n):
|
300 |
-
|
301 |
-
def parse(x):
|
302 |
-
if isinstance(x, collections.abc.Iterable):
|
303 |
-
return x
|
304 |
-
return tuple(repeat(x, n))
|
305 |
-
|
306 |
-
return parse
|
307 |
-
|
308 |
-
|
309 |
-
to_1tuple = _ntuple(1)
|
310 |
-
to_2tuple = _ntuple(2)
|
311 |
-
to_3tuple = _ntuple(3)
|
312 |
-
to_4tuple = _ntuple(4)
|
313 |
-
to_ntuple = _ntuple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/basicvsr_arch.py
DELETED
@@ -1,336 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn as nn
|
3 |
-
from torch.nn import functional as F
|
4 |
-
|
5 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
6 |
-
from .arch_util import ResidualBlockNoBN, flow_warp, make_layer
|
7 |
-
from .edvr_arch import PCDAlignment, TSAFusion
|
8 |
-
from .spynet_arch import SpyNet
|
9 |
-
|
10 |
-
|
11 |
-
@ARCH_REGISTRY.register()
|
12 |
-
class BasicVSR(nn.Module):
|
13 |
-
"""A recurrent network for video SR. Now only x4 is supported.
|
14 |
-
|
15 |
-
Args:
|
16 |
-
num_feat (int): Number of channels. Default: 64.
|
17 |
-
num_block (int): Number of residual blocks for each branch. Default: 15
|
18 |
-
spynet_path (str): Path to the pretrained weights of SPyNet. Default: None.
|
19 |
-
"""
|
20 |
-
|
21 |
-
def __init__(self, num_feat=64, num_block=15, spynet_path=None):
|
22 |
-
super().__init__()
|
23 |
-
self.num_feat = num_feat
|
24 |
-
|
25 |
-
# alignment
|
26 |
-
self.spynet = SpyNet(spynet_path)
|
27 |
-
|
28 |
-
# propagation
|
29 |
-
self.backward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block)
|
30 |
-
self.forward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block)
|
31 |
-
|
32 |
-
# reconstruction
|
33 |
-
self.fusion = nn.Conv2d(num_feat * 2, num_feat, 1, 1, 0, bias=True)
|
34 |
-
self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1, bias=True)
|
35 |
-
self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1, bias=True)
|
36 |
-
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
|
37 |
-
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
|
38 |
-
|
39 |
-
self.pixel_shuffle = nn.PixelShuffle(2)
|
40 |
-
|
41 |
-
# activation functions
|
42 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
43 |
-
|
44 |
-
def get_flow(self, x):
|
45 |
-
b, n, c, h, w = x.size()
|
46 |
-
|
47 |
-
x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w)
|
48 |
-
x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w)
|
49 |
-
|
50 |
-
flows_backward = self.spynet(x_1, x_2).view(b, n - 1, 2, h, w)
|
51 |
-
flows_forward = self.spynet(x_2, x_1).view(b, n - 1, 2, h, w)
|
52 |
-
|
53 |
-
return flows_forward, flows_backward
|
54 |
-
|
55 |
-
def forward(self, x):
|
56 |
-
"""Forward function of BasicVSR.
|
57 |
-
|
58 |
-
Args:
|
59 |
-
x: Input frames with shape (b, n, c, h, w). n is the temporal dimension / number of frames.
|
60 |
-
"""
|
61 |
-
flows_forward, flows_backward = self.get_flow(x)
|
62 |
-
b, n, _, h, w = x.size()
|
63 |
-
|
64 |
-
# backward branch
|
65 |
-
out_l = []
|
66 |
-
feat_prop = x.new_zeros(b, self.num_feat, h, w)
|
67 |
-
for i in range(n - 1, -1, -1):
|
68 |
-
x_i = x[:, i, :, :, :]
|
69 |
-
if i < n - 1:
|
70 |
-
flow = flows_backward[:, i, :, :, :]
|
71 |
-
feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
|
72 |
-
feat_prop = torch.cat([x_i, feat_prop], dim=1)
|
73 |
-
feat_prop = self.backward_trunk(feat_prop)
|
74 |
-
out_l.insert(0, feat_prop)
|
75 |
-
|
76 |
-
# forward branch
|
77 |
-
feat_prop = torch.zeros_like(feat_prop)
|
78 |
-
for i in range(0, n):
|
79 |
-
x_i = x[:, i, :, :, :]
|
80 |
-
if i > 0:
|
81 |
-
flow = flows_forward[:, i - 1, :, :, :]
|
82 |
-
feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
|
83 |
-
|
84 |
-
feat_prop = torch.cat([x_i, feat_prop], dim=1)
|
85 |
-
feat_prop = self.forward_trunk(feat_prop)
|
86 |
-
|
87 |
-
# upsample
|
88 |
-
out = torch.cat([out_l[i], feat_prop], dim=1)
|
89 |
-
out = self.lrelu(self.fusion(out))
|
90 |
-
out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
|
91 |
-
out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
|
92 |
-
out = self.lrelu(self.conv_hr(out))
|
93 |
-
out = self.conv_last(out)
|
94 |
-
base = F.interpolate(x_i, scale_factor=4, mode='bilinear', align_corners=False)
|
95 |
-
out += base
|
96 |
-
out_l[i] = out
|
97 |
-
|
98 |
-
return torch.stack(out_l, dim=1)
|
99 |
-
|
100 |
-
|
101 |
-
class ConvResidualBlocks(nn.Module):
|
102 |
-
"""Conv and residual block used in BasicVSR.
|
103 |
-
|
104 |
-
Args:
|
105 |
-
num_in_ch (int): Number of input channels. Default: 3.
|
106 |
-
num_out_ch (int): Number of output channels. Default: 64.
|
107 |
-
num_block (int): Number of residual blocks. Default: 15.
|
108 |
-
"""
|
109 |
-
|
110 |
-
def __init__(self, num_in_ch=3, num_out_ch=64, num_block=15):
|
111 |
-
super().__init__()
|
112 |
-
self.main = nn.Sequential(
|
113 |
-
nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1, bias=True), nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
114 |
-
make_layer(ResidualBlockNoBN, num_block, num_feat=num_out_ch))
|
115 |
-
|
116 |
-
def forward(self, fea):
|
117 |
-
return self.main(fea)
|
118 |
-
|
119 |
-
|
120 |
-
@ARCH_REGISTRY.register()
|
121 |
-
class IconVSR(nn.Module):
|
122 |
-
"""IconVSR, proposed also in the BasicVSR paper.
|
123 |
-
|
124 |
-
Args:
|
125 |
-
num_feat (int): Number of channels. Default: 64.
|
126 |
-
num_block (int): Number of residual blocks for each branch. Default: 15.
|
127 |
-
keyframe_stride (int): Keyframe stride. Default: 5.
|
128 |
-
temporal_padding (int): Temporal padding. Default: 2.
|
129 |
-
spynet_path (str): Path to the pretrained weights of SPyNet. Default: None.
|
130 |
-
edvr_path (str): Path to the pretrained EDVR model. Default: None.
|
131 |
-
"""
|
132 |
-
|
133 |
-
def __init__(self,
|
134 |
-
num_feat=64,
|
135 |
-
num_block=15,
|
136 |
-
keyframe_stride=5,
|
137 |
-
temporal_padding=2,
|
138 |
-
spynet_path=None,
|
139 |
-
edvr_path=None):
|
140 |
-
super().__init__()
|
141 |
-
|
142 |
-
self.num_feat = num_feat
|
143 |
-
self.temporal_padding = temporal_padding
|
144 |
-
self.keyframe_stride = keyframe_stride
|
145 |
-
|
146 |
-
# keyframe_branch
|
147 |
-
self.edvr = EDVRFeatureExtractor(temporal_padding * 2 + 1, num_feat, edvr_path)
|
148 |
-
# alignment
|
149 |
-
self.spynet = SpyNet(spynet_path)
|
150 |
-
|
151 |
-
# propagation
|
152 |
-
self.backward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True)
|
153 |
-
self.backward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block)
|
154 |
-
|
155 |
-
self.forward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True)
|
156 |
-
self.forward_trunk = ConvResidualBlocks(2 * num_feat + 3, num_feat, num_block)
|
157 |
-
|
158 |
-
# reconstruction
|
159 |
-
self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1, bias=True)
|
160 |
-
self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1, bias=True)
|
161 |
-
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
|
162 |
-
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
|
163 |
-
|
164 |
-
self.pixel_shuffle = nn.PixelShuffle(2)
|
165 |
-
|
166 |
-
# activation functions
|
167 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
168 |
-
|
169 |
-
def pad_spatial(self, x):
|
170 |
-
"""Apply padding spatially.
|
171 |
-
|
172 |
-
Since the PCD module in EDVR requires that the resolution is a multiple
|
173 |
-
of 4, we apply padding to the input LR images if their resolution is
|
174 |
-
not divisible by 4.
|
175 |
-
|
176 |
-
Args:
|
177 |
-
x (Tensor): Input LR sequence with shape (n, t, c, h, w).
|
178 |
-
Returns:
|
179 |
-
Tensor: Padded LR sequence with shape (n, t, c, h_pad, w_pad).
|
180 |
-
"""
|
181 |
-
n, t, c, h, w = x.size()
|
182 |
-
|
183 |
-
pad_h = (4 - h % 4) % 4
|
184 |
-
pad_w = (4 - w % 4) % 4
|
185 |
-
|
186 |
-
# padding
|
187 |
-
x = x.view(-1, c, h, w)
|
188 |
-
x = F.pad(x, [0, pad_w, 0, pad_h], mode='reflect')
|
189 |
-
|
190 |
-
return x.view(n, t, c, h + pad_h, w + pad_w)
|
191 |
-
|
192 |
-
def get_flow(self, x):
|
193 |
-
b, n, c, h, w = x.size()
|
194 |
-
|
195 |
-
x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w)
|
196 |
-
x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w)
|
197 |
-
|
198 |
-
flows_backward = self.spynet(x_1, x_2).view(b, n - 1, 2, h, w)
|
199 |
-
flows_forward = self.spynet(x_2, x_1).view(b, n - 1, 2, h, w)
|
200 |
-
|
201 |
-
return flows_forward, flows_backward
|
202 |
-
|
203 |
-
def get_keyframe_feature(self, x, keyframe_idx):
|
204 |
-
if self.temporal_padding == 2:
|
205 |
-
x = [x[:, [4, 3]], x, x[:, [-4, -5]]]
|
206 |
-
elif self.temporal_padding == 3:
|
207 |
-
x = [x[:, [6, 5, 4]], x, x[:, [-5, -6, -7]]]
|
208 |
-
x = torch.cat(x, dim=1)
|
209 |
-
|
210 |
-
num_frames = 2 * self.temporal_padding + 1
|
211 |
-
feats_keyframe = {}
|
212 |
-
for i in keyframe_idx:
|
213 |
-
feats_keyframe[i] = self.edvr(x[:, i:i + num_frames].contiguous())
|
214 |
-
return feats_keyframe
|
215 |
-
|
216 |
-
def forward(self, x):
|
217 |
-
b, n, _, h_input, w_input = x.size()
|
218 |
-
|
219 |
-
x = self.pad_spatial(x)
|
220 |
-
h, w = x.shape[3:]
|
221 |
-
|
222 |
-
keyframe_idx = list(range(0, n, self.keyframe_stride))
|
223 |
-
if keyframe_idx[-1] != n - 1:
|
224 |
-
keyframe_idx.append(n - 1) # last frame is a keyframe
|
225 |
-
|
226 |
-
# compute flow and keyframe features
|
227 |
-
flows_forward, flows_backward = self.get_flow(x)
|
228 |
-
feats_keyframe = self.get_keyframe_feature(x, keyframe_idx)
|
229 |
-
|
230 |
-
# backward branch
|
231 |
-
out_l = []
|
232 |
-
feat_prop = x.new_zeros(b, self.num_feat, h, w)
|
233 |
-
for i in range(n - 1, -1, -1):
|
234 |
-
x_i = x[:, i, :, :, :]
|
235 |
-
if i < n - 1:
|
236 |
-
flow = flows_backward[:, i, :, :, :]
|
237 |
-
feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
|
238 |
-
if i in keyframe_idx:
|
239 |
-
feat_prop = torch.cat([feat_prop, feats_keyframe[i]], dim=1)
|
240 |
-
feat_prop = self.backward_fusion(feat_prop)
|
241 |
-
feat_prop = torch.cat([x_i, feat_prop], dim=1)
|
242 |
-
feat_prop = self.backward_trunk(feat_prop)
|
243 |
-
out_l.insert(0, feat_prop)
|
244 |
-
|
245 |
-
# forward branch
|
246 |
-
feat_prop = torch.zeros_like(feat_prop)
|
247 |
-
for i in range(0, n):
|
248 |
-
x_i = x[:, i, :, :, :]
|
249 |
-
if i > 0:
|
250 |
-
flow = flows_forward[:, i - 1, :, :, :]
|
251 |
-
feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
|
252 |
-
if i in keyframe_idx:
|
253 |
-
feat_prop = torch.cat([feat_prop, feats_keyframe[i]], dim=1)
|
254 |
-
feat_prop = self.forward_fusion(feat_prop)
|
255 |
-
|
256 |
-
feat_prop = torch.cat([x_i, out_l[i], feat_prop], dim=1)
|
257 |
-
feat_prop = self.forward_trunk(feat_prop)
|
258 |
-
|
259 |
-
# upsample
|
260 |
-
out = self.lrelu(self.pixel_shuffle(self.upconv1(feat_prop)))
|
261 |
-
out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
|
262 |
-
out = self.lrelu(self.conv_hr(out))
|
263 |
-
out = self.conv_last(out)
|
264 |
-
base = F.interpolate(x_i, scale_factor=4, mode='bilinear', align_corners=False)
|
265 |
-
out += base
|
266 |
-
out_l[i] = out
|
267 |
-
|
268 |
-
return torch.stack(out_l, dim=1)[..., :4 * h_input, :4 * w_input]
|
269 |
-
|
270 |
-
|
271 |
-
class EDVRFeatureExtractor(nn.Module):
|
272 |
-
"""EDVR feature extractor used in IconVSR.
|
273 |
-
|
274 |
-
Args:
|
275 |
-
num_input_frame (int): Number of input frames.
|
276 |
-
num_feat (int): Number of feature channels
|
277 |
-
load_path (str): Path to the pretrained weights of EDVR. Default: None.
|
278 |
-
"""
|
279 |
-
|
280 |
-
def __init__(self, num_input_frame, num_feat, load_path):
|
281 |
-
|
282 |
-
super(EDVRFeatureExtractor, self).__init__()
|
283 |
-
|
284 |
-
self.center_frame_idx = num_input_frame // 2
|
285 |
-
|
286 |
-
# extract pyramid features
|
287 |
-
self.conv_first = nn.Conv2d(3, num_feat, 3, 1, 1)
|
288 |
-
self.feature_extraction = make_layer(ResidualBlockNoBN, 5, num_feat=num_feat)
|
289 |
-
self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
290 |
-
self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
291 |
-
self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
292 |
-
self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
293 |
-
|
294 |
-
# pcd and tsa module
|
295 |
-
self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=8)
|
296 |
-
self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_input_frame, center_frame_idx=self.center_frame_idx)
|
297 |
-
|
298 |
-
# activation function
|
299 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
300 |
-
|
301 |
-
if load_path:
|
302 |
-
self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params'])
|
303 |
-
|
304 |
-
def forward(self, x):
|
305 |
-
b, n, c, h, w = x.size()
|
306 |
-
|
307 |
-
# extract features for each frame
|
308 |
-
# L1
|
309 |
-
feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w)))
|
310 |
-
feat_l1 = self.feature_extraction(feat_l1)
|
311 |
-
# L2
|
312 |
-
feat_l2 = self.lrelu(self.conv_l2_1(feat_l1))
|
313 |
-
feat_l2 = self.lrelu(self.conv_l2_2(feat_l2))
|
314 |
-
# L3
|
315 |
-
feat_l3 = self.lrelu(self.conv_l3_1(feat_l2))
|
316 |
-
feat_l3 = self.lrelu(self.conv_l3_2(feat_l3))
|
317 |
-
|
318 |
-
feat_l1 = feat_l1.view(b, n, -1, h, w)
|
319 |
-
feat_l2 = feat_l2.view(b, n, -1, h // 2, w // 2)
|
320 |
-
feat_l3 = feat_l3.view(b, n, -1, h // 4, w // 4)
|
321 |
-
|
322 |
-
# PCD alignment
|
323 |
-
ref_feat_l = [ # reference feature list
|
324 |
-
feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(),
|
325 |
-
feat_l3[:, self.center_frame_idx, :, :, :].clone()
|
326 |
-
]
|
327 |
-
aligned_feat = []
|
328 |
-
for i in range(n):
|
329 |
-
nbr_feat_l = [ # neighboring feature list
|
330 |
-
feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone()
|
331 |
-
]
|
332 |
-
aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l))
|
333 |
-
aligned_feat = torch.stack(aligned_feat, dim=1) # (b, t, c, h, w)
|
334 |
-
|
335 |
-
# TSA fusion
|
336 |
-
return self.fusion(aligned_feat)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/basicvsrpp_arch.py
DELETED
@@ -1,417 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import torchvision
|
5 |
-
import warnings
|
6 |
-
|
7 |
-
from basicsr.archs.arch_util import flow_warp
|
8 |
-
from basicsr.archs.basicvsr_arch import ConvResidualBlocks
|
9 |
-
from basicsr.archs.spynet_arch import SpyNet
|
10 |
-
from basicsr.ops.dcn import ModulatedDeformConvPack
|
11 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
12 |
-
|
13 |
-
|
14 |
-
@ARCH_REGISTRY.register()
|
15 |
-
class BasicVSRPlusPlus(nn.Module):
|
16 |
-
"""BasicVSR++ network structure.
|
17 |
-
|
18 |
-
Support either x4 upsampling or same size output. Since DCN is used in this
|
19 |
-
model, it can only be used with CUDA enabled. If CUDA is not enabled,
|
20 |
-
feature alignment will be skipped. Besides, we adopt the official DCN
|
21 |
-
implementation and the version of torch need to be higher than 1.9.
|
22 |
-
|
23 |
-
``Paper: BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment``
|
24 |
-
|
25 |
-
Args:
|
26 |
-
mid_channels (int, optional): Channel number of the intermediate
|
27 |
-
features. Default: 64.
|
28 |
-
num_blocks (int, optional): The number of residual blocks in each
|
29 |
-
propagation branch. Default: 7.
|
30 |
-
max_residue_magnitude (int): The maximum magnitude of the offset
|
31 |
-
residue (Eq. 6 in paper). Default: 10.
|
32 |
-
is_low_res_input (bool, optional): Whether the input is low-resolution
|
33 |
-
or not. If False, the output resolution is equal to the input
|
34 |
-
resolution. Default: True.
|
35 |
-
spynet_path (str): Path to the pretrained weights of SPyNet. Default: None.
|
36 |
-
cpu_cache_length (int, optional): When the length of sequence is larger
|
37 |
-
than this value, the intermediate features are sent to CPU. This
|
38 |
-
saves GPU memory, but slows down the inference speed. You can
|
39 |
-
increase this number if you have a GPU with large memory.
|
40 |
-
Default: 100.
|
41 |
-
"""
|
42 |
-
|
43 |
-
def __init__(self,
|
44 |
-
mid_channels=64,
|
45 |
-
num_blocks=7,
|
46 |
-
max_residue_magnitude=10,
|
47 |
-
is_low_res_input=True,
|
48 |
-
spynet_path=None,
|
49 |
-
cpu_cache_length=100):
|
50 |
-
|
51 |
-
super().__init__()
|
52 |
-
self.mid_channels = mid_channels
|
53 |
-
self.is_low_res_input = is_low_res_input
|
54 |
-
self.cpu_cache_length = cpu_cache_length
|
55 |
-
|
56 |
-
# optical flow
|
57 |
-
self.spynet = SpyNet(spynet_path)
|
58 |
-
|
59 |
-
# feature extraction module
|
60 |
-
if is_low_res_input:
|
61 |
-
self.feat_extract = ConvResidualBlocks(3, mid_channels, 5)
|
62 |
-
else:
|
63 |
-
self.feat_extract = nn.Sequential(
|
64 |
-
nn.Conv2d(3, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
65 |
-
nn.Conv2d(mid_channels, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
66 |
-
ConvResidualBlocks(mid_channels, mid_channels, 5))
|
67 |
-
|
68 |
-
# propagation branches
|
69 |
-
self.deform_align = nn.ModuleDict()
|
70 |
-
self.backbone = nn.ModuleDict()
|
71 |
-
modules = ['backward_1', 'forward_1', 'backward_2', 'forward_2']
|
72 |
-
for i, module in enumerate(modules):
|
73 |
-
if torch.cuda.is_available():
|
74 |
-
self.deform_align[module] = SecondOrderDeformableAlignment(
|
75 |
-
2 * mid_channels,
|
76 |
-
mid_channels,
|
77 |
-
3,
|
78 |
-
padding=1,
|
79 |
-
deformable_groups=16,
|
80 |
-
max_residue_magnitude=max_residue_magnitude)
|
81 |
-
self.backbone[module] = ConvResidualBlocks((2 + i) * mid_channels, mid_channels, num_blocks)
|
82 |
-
|
83 |
-
# upsampling module
|
84 |
-
self.reconstruction = ConvResidualBlocks(5 * mid_channels, mid_channels, 5)
|
85 |
-
|
86 |
-
self.upconv1 = nn.Conv2d(mid_channels, mid_channels * 4, 3, 1, 1, bias=True)
|
87 |
-
self.upconv2 = nn.Conv2d(mid_channels, 64 * 4, 3, 1, 1, bias=True)
|
88 |
-
|
89 |
-
self.pixel_shuffle = nn.PixelShuffle(2)
|
90 |
-
|
91 |
-
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
|
92 |
-
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
|
93 |
-
self.img_upsample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False)
|
94 |
-
|
95 |
-
# activation function
|
96 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
97 |
-
|
98 |
-
# check if the sequence is augmented by flipping
|
99 |
-
self.is_mirror_extended = False
|
100 |
-
|
101 |
-
if len(self.deform_align) > 0:
|
102 |
-
self.is_with_alignment = True
|
103 |
-
else:
|
104 |
-
self.is_with_alignment = False
|
105 |
-
warnings.warn('Deformable alignment module is not added. '
|
106 |
-
'Probably your CUDA is not configured correctly. DCN can only '
|
107 |
-
'be used with CUDA enabled. Alignment is skipped now.')
|
108 |
-
|
109 |
-
def check_if_mirror_extended(self, lqs):
|
110 |
-
"""Check whether the input is a mirror-extended sequence.
|
111 |
-
|
112 |
-
If mirror-extended, the i-th (i=0, ..., t-1) frame is equal to the (t-1-i)-th frame.
|
113 |
-
|
114 |
-
Args:
|
115 |
-
lqs (tensor): Input low quality (LQ) sequence with shape (n, t, c, h, w).
|
116 |
-
"""
|
117 |
-
|
118 |
-
if lqs.size(1) % 2 == 0:
|
119 |
-
lqs_1, lqs_2 = torch.chunk(lqs, 2, dim=1)
|
120 |
-
if torch.norm(lqs_1 - lqs_2.flip(1)) == 0:
|
121 |
-
self.is_mirror_extended = True
|
122 |
-
|
123 |
-
def compute_flow(self, lqs):
|
124 |
-
"""Compute optical flow using SPyNet for feature alignment.
|
125 |
-
|
126 |
-
Note that if the input is an mirror-extended sequence, 'flows_forward'
|
127 |
-
is not needed, since it is equal to 'flows_backward.flip(1)'.
|
128 |
-
|
129 |
-
Args:
|
130 |
-
lqs (tensor): Input low quality (LQ) sequence with
|
131 |
-
shape (n, t, c, h, w).
|
132 |
-
|
133 |
-
Return:
|
134 |
-
tuple(Tensor): Optical flow. 'flows_forward' corresponds to the flows used for forward-time propagation \
|
135 |
-
(current to previous). 'flows_backward' corresponds to the flows used for backward-time \
|
136 |
-
propagation (current to next).
|
137 |
-
"""
|
138 |
-
|
139 |
-
n, t, c, h, w = lqs.size()
|
140 |
-
lqs_1 = lqs[:, :-1, :, :, :].reshape(-1, c, h, w)
|
141 |
-
lqs_2 = lqs[:, 1:, :, :, :].reshape(-1, c, h, w)
|
142 |
-
|
143 |
-
flows_backward = self.spynet(lqs_1, lqs_2).view(n, t - 1, 2, h, w)
|
144 |
-
|
145 |
-
if self.is_mirror_extended: # flows_forward = flows_backward.flip(1)
|
146 |
-
flows_forward = flows_backward.flip(1)
|
147 |
-
else:
|
148 |
-
flows_forward = self.spynet(lqs_2, lqs_1).view(n, t - 1, 2, h, w)
|
149 |
-
|
150 |
-
if self.cpu_cache:
|
151 |
-
flows_backward = flows_backward.cpu()
|
152 |
-
flows_forward = flows_forward.cpu()
|
153 |
-
|
154 |
-
return flows_forward, flows_backward
|
155 |
-
|
156 |
-
def propagate(self, feats, flows, module_name):
|
157 |
-
"""Propagate the latent features throughout the sequence.
|
158 |
-
|
159 |
-
Args:
|
160 |
-
feats dict(list[tensor]): Features from previous branches. Each
|
161 |
-
component is a list of tensors with shape (n, c, h, w).
|
162 |
-
flows (tensor): Optical flows with shape (n, t - 1, 2, h, w).
|
163 |
-
module_name (str): The name of the propgation branches. Can either
|
164 |
-
be 'backward_1', 'forward_1', 'backward_2', 'forward_2'.
|
165 |
-
|
166 |
-
Return:
|
167 |
-
dict(list[tensor]): A dictionary containing all the propagated \
|
168 |
-
features. Each key in the dictionary corresponds to a \
|
169 |
-
propagation branch, which is represented by a list of tensors.
|
170 |
-
"""
|
171 |
-
|
172 |
-
n, t, _, h, w = flows.size()
|
173 |
-
|
174 |
-
frame_idx = range(0, t + 1)
|
175 |
-
flow_idx = range(-1, t)
|
176 |
-
mapping_idx = list(range(0, len(feats['spatial'])))
|
177 |
-
mapping_idx += mapping_idx[::-1]
|
178 |
-
|
179 |
-
if 'backward' in module_name:
|
180 |
-
frame_idx = frame_idx[::-1]
|
181 |
-
flow_idx = frame_idx
|
182 |
-
|
183 |
-
feat_prop = flows.new_zeros(n, self.mid_channels, h, w)
|
184 |
-
for i, idx in enumerate(frame_idx):
|
185 |
-
feat_current = feats['spatial'][mapping_idx[idx]]
|
186 |
-
if self.cpu_cache:
|
187 |
-
feat_current = feat_current.cuda()
|
188 |
-
feat_prop = feat_prop.cuda()
|
189 |
-
# second-order deformable alignment
|
190 |
-
if i > 0 and self.is_with_alignment:
|
191 |
-
flow_n1 = flows[:, flow_idx[i], :, :, :]
|
192 |
-
if self.cpu_cache:
|
193 |
-
flow_n1 = flow_n1.cuda()
|
194 |
-
|
195 |
-
cond_n1 = flow_warp(feat_prop, flow_n1.permute(0, 2, 3, 1))
|
196 |
-
|
197 |
-
# initialize second-order features
|
198 |
-
feat_n2 = torch.zeros_like(feat_prop)
|
199 |
-
flow_n2 = torch.zeros_like(flow_n1)
|
200 |
-
cond_n2 = torch.zeros_like(cond_n1)
|
201 |
-
|
202 |
-
if i > 1: # second-order features
|
203 |
-
feat_n2 = feats[module_name][-2]
|
204 |
-
if self.cpu_cache:
|
205 |
-
feat_n2 = feat_n2.cuda()
|
206 |
-
|
207 |
-
flow_n2 = flows[:, flow_idx[i - 1], :, :, :]
|
208 |
-
if self.cpu_cache:
|
209 |
-
flow_n2 = flow_n2.cuda()
|
210 |
-
|
211 |
-
flow_n2 = flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1))
|
212 |
-
cond_n2 = flow_warp(feat_n2, flow_n2.permute(0, 2, 3, 1))
|
213 |
-
|
214 |
-
# flow-guided deformable convolution
|
215 |
-
cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1)
|
216 |
-
feat_prop = torch.cat([feat_prop, feat_n2], dim=1)
|
217 |
-
feat_prop = self.deform_align[module_name](feat_prop, cond, flow_n1, flow_n2)
|
218 |
-
|
219 |
-
# concatenate and residual blocks
|
220 |
-
feat = [feat_current] + [feats[k][idx] for k in feats if k not in ['spatial', module_name]] + [feat_prop]
|
221 |
-
if self.cpu_cache:
|
222 |
-
feat = [f.cuda() for f in feat]
|
223 |
-
|
224 |
-
feat = torch.cat(feat, dim=1)
|
225 |
-
feat_prop = feat_prop + self.backbone[module_name](feat)
|
226 |
-
feats[module_name].append(feat_prop)
|
227 |
-
|
228 |
-
if self.cpu_cache:
|
229 |
-
feats[module_name][-1] = feats[module_name][-1].cpu()
|
230 |
-
torch.cuda.empty_cache()
|
231 |
-
|
232 |
-
if 'backward' in module_name:
|
233 |
-
feats[module_name] = feats[module_name][::-1]
|
234 |
-
|
235 |
-
return feats
|
236 |
-
|
237 |
-
def upsample(self, lqs, feats):
|
238 |
-
"""Compute the output image given the features.
|
239 |
-
|
240 |
-
Args:
|
241 |
-
lqs (tensor): Input low quality (LQ) sequence with
|
242 |
-
shape (n, t, c, h, w).
|
243 |
-
feats (dict): The features from the propagation branches.
|
244 |
-
|
245 |
-
Returns:
|
246 |
-
Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).
|
247 |
-
"""
|
248 |
-
|
249 |
-
outputs = []
|
250 |
-
num_outputs = len(feats['spatial'])
|
251 |
-
|
252 |
-
mapping_idx = list(range(0, num_outputs))
|
253 |
-
mapping_idx += mapping_idx[::-1]
|
254 |
-
|
255 |
-
for i in range(0, lqs.size(1)):
|
256 |
-
hr = [feats[k].pop(0) for k in feats if k != 'spatial']
|
257 |
-
hr.insert(0, feats['spatial'][mapping_idx[i]])
|
258 |
-
hr = torch.cat(hr, dim=1)
|
259 |
-
if self.cpu_cache:
|
260 |
-
hr = hr.cuda()
|
261 |
-
|
262 |
-
hr = self.reconstruction(hr)
|
263 |
-
hr = self.lrelu(self.pixel_shuffle(self.upconv1(hr)))
|
264 |
-
hr = self.lrelu(self.pixel_shuffle(self.upconv2(hr)))
|
265 |
-
hr = self.lrelu(self.conv_hr(hr))
|
266 |
-
hr = self.conv_last(hr)
|
267 |
-
if self.is_low_res_input:
|
268 |
-
hr += self.img_upsample(lqs[:, i, :, :, :])
|
269 |
-
else:
|
270 |
-
hr += lqs[:, i, :, :, :]
|
271 |
-
|
272 |
-
if self.cpu_cache:
|
273 |
-
hr = hr.cpu()
|
274 |
-
torch.cuda.empty_cache()
|
275 |
-
|
276 |
-
outputs.append(hr)
|
277 |
-
|
278 |
-
return torch.stack(outputs, dim=1)
|
279 |
-
|
280 |
-
def forward(self, lqs):
|
281 |
-
"""Forward function for BasicVSR++.
|
282 |
-
|
283 |
-
Args:
|
284 |
-
lqs (tensor): Input low quality (LQ) sequence with
|
285 |
-
shape (n, t, c, h, w).
|
286 |
-
|
287 |
-
Returns:
|
288 |
-
Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).
|
289 |
-
"""
|
290 |
-
|
291 |
-
n, t, c, h, w = lqs.size()
|
292 |
-
|
293 |
-
# whether to cache the features in CPU
|
294 |
-
self.cpu_cache = True if t > self.cpu_cache_length else False
|
295 |
-
|
296 |
-
if self.is_low_res_input:
|
297 |
-
lqs_downsample = lqs.clone()
|
298 |
-
else:
|
299 |
-
lqs_downsample = F.interpolate(
|
300 |
-
lqs.view(-1, c, h, w), scale_factor=0.25, mode='bicubic').view(n, t, c, h // 4, w // 4)
|
301 |
-
|
302 |
-
# check whether the input is an extended sequence
|
303 |
-
self.check_if_mirror_extended(lqs)
|
304 |
-
|
305 |
-
feats = {}
|
306 |
-
# compute spatial features
|
307 |
-
if self.cpu_cache:
|
308 |
-
feats['spatial'] = []
|
309 |
-
for i in range(0, t):
|
310 |
-
feat = self.feat_extract(lqs[:, i, :, :, :]).cpu()
|
311 |
-
feats['spatial'].append(feat)
|
312 |
-
torch.cuda.empty_cache()
|
313 |
-
else:
|
314 |
-
feats_ = self.feat_extract(lqs.view(-1, c, h, w))
|
315 |
-
h, w = feats_.shape[2:]
|
316 |
-
feats_ = feats_.view(n, t, -1, h, w)
|
317 |
-
feats['spatial'] = [feats_[:, i, :, :, :] for i in range(0, t)]
|
318 |
-
|
319 |
-
# compute optical flow using the low-res inputs
|
320 |
-
assert lqs_downsample.size(3) >= 64 and lqs_downsample.size(4) >= 64, (
|
321 |
-
'The height and width of low-res inputs must be at least 64, '
|
322 |
-
f'but got {h} and {w}.')
|
323 |
-
flows_forward, flows_backward = self.compute_flow(lqs_downsample)
|
324 |
-
|
325 |
-
# feature propgation
|
326 |
-
for iter_ in [1, 2]:
|
327 |
-
for direction in ['backward', 'forward']:
|
328 |
-
module = f'{direction}_{iter_}'
|
329 |
-
|
330 |
-
feats[module] = []
|
331 |
-
|
332 |
-
if direction == 'backward':
|
333 |
-
flows = flows_backward
|
334 |
-
elif flows_forward is not None:
|
335 |
-
flows = flows_forward
|
336 |
-
else:
|
337 |
-
flows = flows_backward.flip(1)
|
338 |
-
|
339 |
-
feats = self.propagate(feats, flows, module)
|
340 |
-
if self.cpu_cache:
|
341 |
-
del flows
|
342 |
-
torch.cuda.empty_cache()
|
343 |
-
|
344 |
-
return self.upsample(lqs, feats)
|
345 |
-
|
346 |
-
|
347 |
-
class SecondOrderDeformableAlignment(ModulatedDeformConvPack):
|
348 |
-
"""Second-order deformable alignment module.
|
349 |
-
|
350 |
-
Args:
|
351 |
-
in_channels (int): Same as nn.Conv2d.
|
352 |
-
out_channels (int): Same as nn.Conv2d.
|
353 |
-
kernel_size (int or tuple[int]): Same as nn.Conv2d.
|
354 |
-
stride (int or tuple[int]): Same as nn.Conv2d.
|
355 |
-
padding (int or tuple[int]): Same as nn.Conv2d.
|
356 |
-
dilation (int or tuple[int]): Same as nn.Conv2d.
|
357 |
-
groups (int): Same as nn.Conv2d.
|
358 |
-
bias (bool or str): If specified as `auto`, it will be decided by the
|
359 |
-
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
|
360 |
-
False.
|
361 |
-
max_residue_magnitude (int): The maximum magnitude of the offset
|
362 |
-
residue (Eq. 6 in paper). Default: 10.
|
363 |
-
"""
|
364 |
-
|
365 |
-
def __init__(self, *args, **kwargs):
|
366 |
-
self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10)
|
367 |
-
|
368 |
-
super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs)
|
369 |
-
|
370 |
-
self.conv_offset = nn.Sequential(
|
371 |
-
nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1),
|
372 |
-
nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
373 |
-
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
|
374 |
-
nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
375 |
-
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
|
376 |
-
nn.LeakyReLU(negative_slope=0.1, inplace=True),
|
377 |
-
nn.Conv2d(self.out_channels, 27 * self.deformable_groups, 3, 1, 1),
|
378 |
-
)
|
379 |
-
|
380 |
-
self.init_offset()
|
381 |
-
|
382 |
-
def init_offset(self):
|
383 |
-
|
384 |
-
def _constant_init(module, val, bias=0):
|
385 |
-
if hasattr(module, 'weight') and module.weight is not None:
|
386 |
-
nn.init.constant_(module.weight, val)
|
387 |
-
if hasattr(module, 'bias') and module.bias is not None:
|
388 |
-
nn.init.constant_(module.bias, bias)
|
389 |
-
|
390 |
-
_constant_init(self.conv_offset[-1], val=0, bias=0)
|
391 |
-
|
392 |
-
def forward(self, x, extra_feat, flow_1, flow_2):
|
393 |
-
extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1)
|
394 |
-
out = self.conv_offset(extra_feat)
|
395 |
-
o1, o2, mask = torch.chunk(out, 3, dim=1)
|
396 |
-
|
397 |
-
# offset
|
398 |
-
offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1))
|
399 |
-
offset_1, offset_2 = torch.chunk(offset, 2, dim=1)
|
400 |
-
offset_1 = offset_1 + flow_1.flip(1).repeat(1, offset_1.size(1) // 2, 1, 1)
|
401 |
-
offset_2 = offset_2 + flow_2.flip(1).repeat(1, offset_2.size(1) // 2, 1, 1)
|
402 |
-
offset = torch.cat([offset_1, offset_2], dim=1)
|
403 |
-
|
404 |
-
# mask
|
405 |
-
mask = torch.sigmoid(mask)
|
406 |
-
|
407 |
-
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
|
408 |
-
self.dilation, mask)
|
409 |
-
|
410 |
-
|
411 |
-
# if __name__ == '__main__':
|
412 |
-
# spynet_path = 'experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth'
|
413 |
-
# model = BasicVSRPlusPlus(spynet_path=spynet_path).cuda()
|
414 |
-
# input = torch.rand(1, 2, 3, 64, 64).cuda()
|
415 |
-
# output = model(input)
|
416 |
-
# print('===================')
|
417 |
-
# print(output.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/dfdnet_arch.py
DELETED
@@ -1,169 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
from torch.nn.utils.spectral_norm import spectral_norm
|
6 |
-
|
7 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
8 |
-
from .dfdnet_util import AttentionBlock, Blur, MSDilationBlock, UpResBlock, adaptive_instance_normalization
|
9 |
-
from .vgg_arch import VGGFeatureExtractor
|
10 |
-
|
11 |
-
|
12 |
-
class SFTUpBlock(nn.Module):
|
13 |
-
"""Spatial feature transform (SFT) with upsampling block.
|
14 |
-
|
15 |
-
Args:
|
16 |
-
in_channel (int): Number of input channels.
|
17 |
-
out_channel (int): Number of output channels.
|
18 |
-
kernel_size (int): Kernel size in convolutions. Default: 3.
|
19 |
-
padding (int): Padding in convolutions. Default: 1.
|
20 |
-
"""
|
21 |
-
|
22 |
-
def __init__(self, in_channel, out_channel, kernel_size=3, padding=1):
|
23 |
-
super(SFTUpBlock, self).__init__()
|
24 |
-
self.conv1 = nn.Sequential(
|
25 |
-
Blur(in_channel),
|
26 |
-
spectral_norm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
|
27 |
-
nn.LeakyReLU(0.04, True),
|
28 |
-
# The official codes use two LeakyReLU here, so 0.04 for equivalent
|
29 |
-
)
|
30 |
-
self.convup = nn.Sequential(
|
31 |
-
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
|
32 |
-
spectral_norm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
|
33 |
-
nn.LeakyReLU(0.2, True),
|
34 |
-
)
|
35 |
-
|
36 |
-
# for SFT scale and shift
|
37 |
-
self.scale_block = nn.Sequential(
|
38 |
-
spectral_norm(nn.Conv2d(in_channel, out_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
|
39 |
-
spectral_norm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)))
|
40 |
-
self.shift_block = nn.Sequential(
|
41 |
-
spectral_norm(nn.Conv2d(in_channel, out_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
|
42 |
-
spectral_norm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)), nn.Sigmoid())
|
43 |
-
# The official codes use sigmoid for shift block, do not know why
|
44 |
-
|
45 |
-
def forward(self, x, updated_feat):
|
46 |
-
out = self.conv1(x)
|
47 |
-
# SFT
|
48 |
-
scale = self.scale_block(updated_feat)
|
49 |
-
shift = self.shift_block(updated_feat)
|
50 |
-
out = out * scale + shift
|
51 |
-
# upsample
|
52 |
-
out = self.convup(out)
|
53 |
-
return out
|
54 |
-
|
55 |
-
|
56 |
-
@ARCH_REGISTRY.register()
|
57 |
-
class DFDNet(nn.Module):
|
58 |
-
"""DFDNet: Deep Face Dictionary Network.
|
59 |
-
|
60 |
-
It only processes faces with 512x512 size.
|
61 |
-
|
62 |
-
Args:
|
63 |
-
num_feat (int): Number of feature channels.
|
64 |
-
dict_path (str): Path to the facial component dictionary.
|
65 |
-
"""
|
66 |
-
|
67 |
-
def __init__(self, num_feat, dict_path):
|
68 |
-
super().__init__()
|
69 |
-
self.parts = ['left_eye', 'right_eye', 'nose', 'mouth']
|
70 |
-
# part_sizes: [80, 80, 50, 110]
|
71 |
-
channel_sizes = [128, 256, 512, 512]
|
72 |
-
self.feature_sizes = np.array([256, 128, 64, 32])
|
73 |
-
self.vgg_layers = ['relu2_2', 'relu3_4', 'relu4_4', 'conv5_4']
|
74 |
-
self.flag_dict_device = False
|
75 |
-
|
76 |
-
# dict
|
77 |
-
self.dict = torch.load(dict_path)
|
78 |
-
|
79 |
-
# vgg face extractor
|
80 |
-
self.vgg_extractor = VGGFeatureExtractor(
|
81 |
-
layer_name_list=self.vgg_layers,
|
82 |
-
vgg_type='vgg19',
|
83 |
-
use_input_norm=True,
|
84 |
-
range_norm=True,
|
85 |
-
requires_grad=False)
|
86 |
-
|
87 |
-
# attention block for fusing dictionary features and input features
|
88 |
-
self.attn_blocks = nn.ModuleDict()
|
89 |
-
for idx, feat_size in enumerate(self.feature_sizes):
|
90 |
-
for name in self.parts:
|
91 |
-
self.attn_blocks[f'{name}_{feat_size}'] = AttentionBlock(channel_sizes[idx])
|
92 |
-
|
93 |
-
# multi scale dilation block
|
94 |
-
self.multi_scale_dilation = MSDilationBlock(num_feat * 8, dilation=[4, 3, 2, 1])
|
95 |
-
|
96 |
-
# upsampling and reconstruction
|
97 |
-
self.upsample0 = SFTUpBlock(num_feat * 8, num_feat * 8)
|
98 |
-
self.upsample1 = SFTUpBlock(num_feat * 8, num_feat * 4)
|
99 |
-
self.upsample2 = SFTUpBlock(num_feat * 4, num_feat * 2)
|
100 |
-
self.upsample3 = SFTUpBlock(num_feat * 2, num_feat)
|
101 |
-
self.upsample4 = nn.Sequential(
|
102 |
-
spectral_norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1)), nn.LeakyReLU(0.2, True), UpResBlock(num_feat),
|
103 |
-
UpResBlock(num_feat), nn.Conv2d(num_feat, 3, kernel_size=3, stride=1, padding=1), nn.Tanh())
|
104 |
-
|
105 |
-
def swap_feat(self, vgg_feat, updated_feat, dict_feat, location, part_name, f_size):
|
106 |
-
"""swap the features from the dictionary."""
|
107 |
-
# get the original vgg features
|
108 |
-
part_feat = vgg_feat[:, :, location[1]:location[3], location[0]:location[2]].clone()
|
109 |
-
# resize original vgg features
|
110 |
-
part_resize_feat = F.interpolate(part_feat, dict_feat.size()[2:4], mode='bilinear', align_corners=False)
|
111 |
-
# use adaptive instance normalization to adjust color and illuminations
|
112 |
-
dict_feat = adaptive_instance_normalization(dict_feat, part_resize_feat)
|
113 |
-
# get similarity scores
|
114 |
-
similarity_score = F.conv2d(part_resize_feat, dict_feat)
|
115 |
-
similarity_score = F.softmax(similarity_score.view(-1), dim=0)
|
116 |
-
# select the most similar features in the dict (after norm)
|
117 |
-
select_idx = torch.argmax(similarity_score)
|
118 |
-
swap_feat = F.interpolate(dict_feat[select_idx:select_idx + 1], part_feat.size()[2:4])
|
119 |
-
# attention
|
120 |
-
attn = self.attn_blocks[f'{part_name}_' + str(f_size)](swap_feat - part_feat)
|
121 |
-
attn_feat = attn * swap_feat
|
122 |
-
# update features
|
123 |
-
updated_feat[:, :, location[1]:location[3], location[0]:location[2]] = attn_feat + part_feat
|
124 |
-
return updated_feat
|
125 |
-
|
126 |
-
def put_dict_to_device(self, x):
|
127 |
-
if self.flag_dict_device is False:
|
128 |
-
for k, v in self.dict.items():
|
129 |
-
for kk, vv in v.items():
|
130 |
-
self.dict[k][kk] = vv.to(x)
|
131 |
-
self.flag_dict_device = True
|
132 |
-
|
133 |
-
def forward(self, x, part_locations):
|
134 |
-
"""
|
135 |
-
Now only support testing with batch size = 0.
|
136 |
-
|
137 |
-
Args:
|
138 |
-
x (Tensor): Input faces with shape (b, c, 512, 512).
|
139 |
-
part_locations (list[Tensor]): Part locations.
|
140 |
-
"""
|
141 |
-
self.put_dict_to_device(x)
|
142 |
-
# extract vggface features
|
143 |
-
vgg_features = self.vgg_extractor(x)
|
144 |
-
# update vggface features using the dictionary for each part
|
145 |
-
updated_vgg_features = []
|
146 |
-
batch = 0 # only supports testing with batch size = 0
|
147 |
-
for vgg_layer, f_size in zip(self.vgg_layers, self.feature_sizes):
|
148 |
-
dict_features = self.dict[f'{f_size}']
|
149 |
-
vgg_feat = vgg_features[vgg_layer]
|
150 |
-
updated_feat = vgg_feat.clone()
|
151 |
-
|
152 |
-
# swap features from dictionary
|
153 |
-
for part_idx, part_name in enumerate(self.parts):
|
154 |
-
location = (part_locations[part_idx][batch] // (512 / f_size)).int()
|
155 |
-
updated_feat = self.swap_feat(vgg_feat, updated_feat, dict_features[part_name], location, part_name,
|
156 |
-
f_size)
|
157 |
-
|
158 |
-
updated_vgg_features.append(updated_feat)
|
159 |
-
|
160 |
-
vgg_feat_dilation = self.multi_scale_dilation(vgg_features['conv5_4'])
|
161 |
-
# use updated vgg features to modulate the upsampled features with
|
162 |
-
# SFT (Spatial Feature Transform) scaling and shifting manner.
|
163 |
-
upsampled_feat = self.upsample0(vgg_feat_dilation, updated_vgg_features[3])
|
164 |
-
upsampled_feat = self.upsample1(upsampled_feat, updated_vgg_features[2])
|
165 |
-
upsampled_feat = self.upsample2(upsampled_feat, updated_vgg_features[1])
|
166 |
-
upsampled_feat = self.upsample3(upsampled_feat, updated_vgg_features[0])
|
167 |
-
out = self.upsample4(upsampled_feat)
|
168 |
-
|
169 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/dfdnet_util.py
DELETED
@@ -1,162 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from torch.autograd import Function
|
5 |
-
from torch.nn.utils.spectral_norm import spectral_norm
|
6 |
-
|
7 |
-
|
8 |
-
class BlurFunctionBackward(Function):
|
9 |
-
|
10 |
-
@staticmethod
|
11 |
-
def forward(ctx, grad_output, kernel, kernel_flip):
|
12 |
-
ctx.save_for_backward(kernel, kernel_flip)
|
13 |
-
grad_input = F.conv2d(grad_output, kernel_flip, padding=1, groups=grad_output.shape[1])
|
14 |
-
return grad_input
|
15 |
-
|
16 |
-
@staticmethod
|
17 |
-
def backward(ctx, gradgrad_output):
|
18 |
-
kernel, _ = ctx.saved_tensors
|
19 |
-
grad_input = F.conv2d(gradgrad_output, kernel, padding=1, groups=gradgrad_output.shape[1])
|
20 |
-
return grad_input, None, None
|
21 |
-
|
22 |
-
|
23 |
-
class BlurFunction(Function):
|
24 |
-
|
25 |
-
@staticmethod
|
26 |
-
def forward(ctx, x, kernel, kernel_flip):
|
27 |
-
ctx.save_for_backward(kernel, kernel_flip)
|
28 |
-
output = F.conv2d(x, kernel, padding=1, groups=x.shape[1])
|
29 |
-
return output
|
30 |
-
|
31 |
-
@staticmethod
|
32 |
-
def backward(ctx, grad_output):
|
33 |
-
kernel, kernel_flip = ctx.saved_tensors
|
34 |
-
grad_input = BlurFunctionBackward.apply(grad_output, kernel, kernel_flip)
|
35 |
-
return grad_input, None, None
|
36 |
-
|
37 |
-
|
38 |
-
blur = BlurFunction.apply
|
39 |
-
|
40 |
-
|
41 |
-
class Blur(nn.Module):
|
42 |
-
|
43 |
-
def __init__(self, channel):
|
44 |
-
super().__init__()
|
45 |
-
kernel = torch.tensor([[1, 2, 1], [2, 4, 2], [1, 2, 1]], dtype=torch.float32)
|
46 |
-
kernel = kernel.view(1, 1, 3, 3)
|
47 |
-
kernel = kernel / kernel.sum()
|
48 |
-
kernel_flip = torch.flip(kernel, [2, 3])
|
49 |
-
|
50 |
-
self.kernel = kernel.repeat(channel, 1, 1, 1)
|
51 |
-
self.kernel_flip = kernel_flip.repeat(channel, 1, 1, 1)
|
52 |
-
|
53 |
-
def forward(self, x):
|
54 |
-
return blur(x, self.kernel.type_as(x), self.kernel_flip.type_as(x))
|
55 |
-
|
56 |
-
|
57 |
-
def calc_mean_std(feat, eps=1e-5):
|
58 |
-
"""Calculate mean and std for adaptive_instance_normalization.
|
59 |
-
|
60 |
-
Args:
|
61 |
-
feat (Tensor): 4D tensor.
|
62 |
-
eps (float): A small value added to the variance to avoid
|
63 |
-
divide-by-zero. Default: 1e-5.
|
64 |
-
"""
|
65 |
-
size = feat.size()
|
66 |
-
assert len(size) == 4, 'The input feature should be 4D tensor.'
|
67 |
-
n, c = size[:2]
|
68 |
-
feat_var = feat.view(n, c, -1).var(dim=2) + eps
|
69 |
-
feat_std = feat_var.sqrt().view(n, c, 1, 1)
|
70 |
-
feat_mean = feat.view(n, c, -1).mean(dim=2).view(n, c, 1, 1)
|
71 |
-
return feat_mean, feat_std
|
72 |
-
|
73 |
-
|
74 |
-
def adaptive_instance_normalization(content_feat, style_feat):
|
75 |
-
"""Adaptive instance normalization.
|
76 |
-
|
77 |
-
Adjust the reference features to have the similar color and illuminations
|
78 |
-
as those in the degradate features.
|
79 |
-
|
80 |
-
Args:
|
81 |
-
content_feat (Tensor): The reference feature.
|
82 |
-
style_feat (Tensor): The degradate features.
|
83 |
-
"""
|
84 |
-
size = content_feat.size()
|
85 |
-
style_mean, style_std = calc_mean_std(style_feat)
|
86 |
-
content_mean, content_std = calc_mean_std(content_feat)
|
87 |
-
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
|
88 |
-
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|
89 |
-
|
90 |
-
|
91 |
-
def AttentionBlock(in_channel):
|
92 |
-
return nn.Sequential(
|
93 |
-
spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
|
94 |
-
spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)))
|
95 |
-
|
96 |
-
|
97 |
-
def conv_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, bias=True):
|
98 |
-
"""Conv block used in MSDilationBlock."""
|
99 |
-
|
100 |
-
return nn.Sequential(
|
101 |
-
spectral_norm(
|
102 |
-
nn.Conv2d(
|
103 |
-
in_channels,
|
104 |
-
out_channels,
|
105 |
-
kernel_size=kernel_size,
|
106 |
-
stride=stride,
|
107 |
-
dilation=dilation,
|
108 |
-
padding=((kernel_size - 1) // 2) * dilation,
|
109 |
-
bias=bias)),
|
110 |
-
nn.LeakyReLU(0.2),
|
111 |
-
spectral_norm(
|
112 |
-
nn.Conv2d(
|
113 |
-
out_channels,
|
114 |
-
out_channels,
|
115 |
-
kernel_size=kernel_size,
|
116 |
-
stride=stride,
|
117 |
-
dilation=dilation,
|
118 |
-
padding=((kernel_size - 1) // 2) * dilation,
|
119 |
-
bias=bias)),
|
120 |
-
)
|
121 |
-
|
122 |
-
|
123 |
-
class MSDilationBlock(nn.Module):
|
124 |
-
"""Multi-scale dilation block."""
|
125 |
-
|
126 |
-
def __init__(self, in_channels, kernel_size=3, dilation=(1, 1, 1, 1), bias=True):
|
127 |
-
super(MSDilationBlock, self).__init__()
|
128 |
-
|
129 |
-
self.conv_blocks = nn.ModuleList()
|
130 |
-
for i in range(4):
|
131 |
-
self.conv_blocks.append(conv_block(in_channels, in_channels, kernel_size, dilation=dilation[i], bias=bias))
|
132 |
-
self.conv_fusion = spectral_norm(
|
133 |
-
nn.Conv2d(
|
134 |
-
in_channels * 4,
|
135 |
-
in_channels,
|
136 |
-
kernel_size=kernel_size,
|
137 |
-
stride=1,
|
138 |
-
padding=(kernel_size - 1) // 2,
|
139 |
-
bias=bias))
|
140 |
-
|
141 |
-
def forward(self, x):
|
142 |
-
out = []
|
143 |
-
for i in range(4):
|
144 |
-
out.append(self.conv_blocks[i](x))
|
145 |
-
out = torch.cat(out, 1)
|
146 |
-
out = self.conv_fusion(out) + x
|
147 |
-
return out
|
148 |
-
|
149 |
-
|
150 |
-
class UpResBlock(nn.Module):
|
151 |
-
|
152 |
-
def __init__(self, in_channel):
|
153 |
-
super(UpResBlock, self).__init__()
|
154 |
-
self.body = nn.Sequential(
|
155 |
-
nn.Conv2d(in_channel, in_channel, 3, 1, 1),
|
156 |
-
nn.LeakyReLU(0.2, True),
|
157 |
-
nn.Conv2d(in_channel, in_channel, 3, 1, 1),
|
158 |
-
)
|
159 |
-
|
160 |
-
def forward(self, x):
|
161 |
-
out = x + self.body(x)
|
162 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/discriminator_arch.py
DELETED
@@ -1,150 +0,0 @@
|
|
1 |
-
from torch import nn as nn
|
2 |
-
from torch.nn import functional as F
|
3 |
-
from torch.nn.utils import spectral_norm
|
4 |
-
|
5 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
6 |
-
|
7 |
-
|
8 |
-
@ARCH_REGISTRY.register()
|
9 |
-
class VGGStyleDiscriminator(nn.Module):
|
10 |
-
"""VGG style discriminator with input size 128 x 128 or 256 x 256.
|
11 |
-
|
12 |
-
It is used to train SRGAN, ESRGAN, and VideoGAN.
|
13 |
-
|
14 |
-
Args:
|
15 |
-
num_in_ch (int): Channel number of inputs. Default: 3.
|
16 |
-
num_feat (int): Channel number of base intermediate features.Default: 64.
|
17 |
-
"""
|
18 |
-
|
19 |
-
def __init__(self, num_in_ch, num_feat, input_size=128):
|
20 |
-
super(VGGStyleDiscriminator, self).__init__()
|
21 |
-
self.input_size = input_size
|
22 |
-
assert self.input_size == 128 or self.input_size == 256, (
|
23 |
-
f'input size must be 128 or 256, but received {input_size}')
|
24 |
-
|
25 |
-
self.conv0_0 = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1, bias=True)
|
26 |
-
self.conv0_1 = nn.Conv2d(num_feat, num_feat, 4, 2, 1, bias=False)
|
27 |
-
self.bn0_1 = nn.BatchNorm2d(num_feat, affine=True)
|
28 |
-
|
29 |
-
self.conv1_0 = nn.Conv2d(num_feat, num_feat * 2, 3, 1, 1, bias=False)
|
30 |
-
self.bn1_0 = nn.BatchNorm2d(num_feat * 2, affine=True)
|
31 |
-
self.conv1_1 = nn.Conv2d(num_feat * 2, num_feat * 2, 4, 2, 1, bias=False)
|
32 |
-
self.bn1_1 = nn.BatchNorm2d(num_feat * 2, affine=True)
|
33 |
-
|
34 |
-
self.conv2_0 = nn.Conv2d(num_feat * 2, num_feat * 4, 3, 1, 1, bias=False)
|
35 |
-
self.bn2_0 = nn.BatchNorm2d(num_feat * 4, affine=True)
|
36 |
-
self.conv2_1 = nn.Conv2d(num_feat * 4, num_feat * 4, 4, 2, 1, bias=False)
|
37 |
-
self.bn2_1 = nn.BatchNorm2d(num_feat * 4, affine=True)
|
38 |
-
|
39 |
-
self.conv3_0 = nn.Conv2d(num_feat * 4, num_feat * 8, 3, 1, 1, bias=False)
|
40 |
-
self.bn3_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
|
41 |
-
self.conv3_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
|
42 |
-
self.bn3_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
|
43 |
-
|
44 |
-
self.conv4_0 = nn.Conv2d(num_feat * 8, num_feat * 8, 3, 1, 1, bias=False)
|
45 |
-
self.bn4_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
|
46 |
-
self.conv4_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
|
47 |
-
self.bn4_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
|
48 |
-
|
49 |
-
if self.input_size == 256:
|
50 |
-
self.conv5_0 = nn.Conv2d(num_feat * 8, num_feat * 8, 3, 1, 1, bias=False)
|
51 |
-
self.bn5_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
|
52 |
-
self.conv5_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
|
53 |
-
self.bn5_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
|
54 |
-
|
55 |
-
self.linear1 = nn.Linear(num_feat * 8 * 4 * 4, 100)
|
56 |
-
self.linear2 = nn.Linear(100, 1)
|
57 |
-
|
58 |
-
# activation function
|
59 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
60 |
-
|
61 |
-
def forward(self, x):
|
62 |
-
assert x.size(2) == self.input_size, (f'Input size must be identical to input_size, but received {x.size()}.')
|
63 |
-
|
64 |
-
feat = self.lrelu(self.conv0_0(x))
|
65 |
-
feat = self.lrelu(self.bn0_1(self.conv0_1(feat))) # output spatial size: /2
|
66 |
-
|
67 |
-
feat = self.lrelu(self.bn1_0(self.conv1_0(feat)))
|
68 |
-
feat = self.lrelu(self.bn1_1(self.conv1_1(feat))) # output spatial size: /4
|
69 |
-
|
70 |
-
feat = self.lrelu(self.bn2_0(self.conv2_0(feat)))
|
71 |
-
feat = self.lrelu(self.bn2_1(self.conv2_1(feat))) # output spatial size: /8
|
72 |
-
|
73 |
-
feat = self.lrelu(self.bn3_0(self.conv3_0(feat)))
|
74 |
-
feat = self.lrelu(self.bn3_1(self.conv3_1(feat))) # output spatial size: /16
|
75 |
-
|
76 |
-
feat = self.lrelu(self.bn4_0(self.conv4_0(feat)))
|
77 |
-
feat = self.lrelu(self.bn4_1(self.conv4_1(feat))) # output spatial size: /32
|
78 |
-
|
79 |
-
if self.input_size == 256:
|
80 |
-
feat = self.lrelu(self.bn5_0(self.conv5_0(feat)))
|
81 |
-
feat = self.lrelu(self.bn5_1(self.conv5_1(feat))) # output spatial size: / 64
|
82 |
-
|
83 |
-
# spatial size: (4, 4)
|
84 |
-
feat = feat.view(feat.size(0), -1)
|
85 |
-
feat = self.lrelu(self.linear1(feat))
|
86 |
-
out = self.linear2(feat)
|
87 |
-
return out
|
88 |
-
|
89 |
-
|
90 |
-
@ARCH_REGISTRY.register(suffix='basicsr')
|
91 |
-
class UNetDiscriminatorSN(nn.Module):
|
92 |
-
"""Defines a U-Net discriminator with spectral normalization (SN)
|
93 |
-
|
94 |
-
It is used in Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
|
95 |
-
|
96 |
-
Arg:
|
97 |
-
num_in_ch (int): Channel number of inputs. Default: 3.
|
98 |
-
num_feat (int): Channel number of base intermediate features. Default: 64.
|
99 |
-
skip_connection (bool): Whether to use skip connections between U-Net. Default: True.
|
100 |
-
"""
|
101 |
-
|
102 |
-
def __init__(self, num_in_ch, num_feat=64, skip_connection=True):
|
103 |
-
super(UNetDiscriminatorSN, self).__init__()
|
104 |
-
self.skip_connection = skip_connection
|
105 |
-
norm = spectral_norm
|
106 |
-
# the first convolution
|
107 |
-
self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1)
|
108 |
-
# downsample
|
109 |
-
self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False))
|
110 |
-
self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False))
|
111 |
-
self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False))
|
112 |
-
# upsample
|
113 |
-
self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False))
|
114 |
-
self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False))
|
115 |
-
self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False))
|
116 |
-
# extra convolutions
|
117 |
-
self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
|
118 |
-
self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
|
119 |
-
self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1)
|
120 |
-
|
121 |
-
def forward(self, x):
|
122 |
-
# downsample
|
123 |
-
x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
|
124 |
-
x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
|
125 |
-
x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
|
126 |
-
x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)
|
127 |
-
|
128 |
-
# upsample
|
129 |
-
x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
|
130 |
-
x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)
|
131 |
-
|
132 |
-
if self.skip_connection:
|
133 |
-
x4 = x4 + x2
|
134 |
-
x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
|
135 |
-
x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)
|
136 |
-
|
137 |
-
if self.skip_connection:
|
138 |
-
x5 = x5 + x1
|
139 |
-
x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
|
140 |
-
x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)
|
141 |
-
|
142 |
-
if self.skip_connection:
|
143 |
-
x6 = x6 + x0
|
144 |
-
|
145 |
-
# extra convolutions
|
146 |
-
out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
|
147 |
-
out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
|
148 |
-
out = self.conv9(out)
|
149 |
-
|
150 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/duf_arch.py
DELETED
@@ -1,276 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
from torch import nn as nn
|
4 |
-
from torch.nn import functional as F
|
5 |
-
|
6 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
7 |
-
|
8 |
-
|
9 |
-
class DenseBlocksTemporalReduce(nn.Module):
|
10 |
-
"""A concatenation of 3 dense blocks with reduction in temporal dimension.
|
11 |
-
|
12 |
-
Note that the output temporal dimension is 6 fewer the input temporal dimension, since there are 3 blocks.
|
13 |
-
|
14 |
-
Args:
|
15 |
-
num_feat (int): Number of channels in the blocks. Default: 64.
|
16 |
-
num_grow_ch (int): Growing factor of the dense blocks. Default: 32
|
17 |
-
adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation.
|
18 |
-
Set to false if you want to train from scratch. Default: False.
|
19 |
-
"""
|
20 |
-
|
21 |
-
def __init__(self, num_feat=64, num_grow_ch=32, adapt_official_weights=False):
|
22 |
-
super(DenseBlocksTemporalReduce, self).__init__()
|
23 |
-
if adapt_official_weights:
|
24 |
-
eps = 1e-3
|
25 |
-
momentum = 1e-3
|
26 |
-
else: # pytorch default values
|
27 |
-
eps = 1e-05
|
28 |
-
momentum = 0.1
|
29 |
-
|
30 |
-
self.temporal_reduce1 = nn.Sequential(
|
31 |
-
nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
32 |
-
nn.Conv3d(num_feat, num_feat, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True),
|
33 |
-
nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
34 |
-
nn.Conv3d(num_feat, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
|
35 |
-
|
36 |
-
self.temporal_reduce2 = nn.Sequential(
|
37 |
-
nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
38 |
-
nn.Conv3d(
|
39 |
-
num_feat + num_grow_ch,
|
40 |
-
num_feat + num_grow_ch, (1, 1, 1),
|
41 |
-
stride=(1, 1, 1),
|
42 |
-
padding=(0, 0, 0),
|
43 |
-
bias=True), nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
44 |
-
nn.Conv3d(num_feat + num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
|
45 |
-
|
46 |
-
self.temporal_reduce3 = nn.Sequential(
|
47 |
-
nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
48 |
-
nn.Conv3d(
|
49 |
-
num_feat + 2 * num_grow_ch,
|
50 |
-
num_feat + 2 * num_grow_ch, (1, 1, 1),
|
51 |
-
stride=(1, 1, 1),
|
52 |
-
padding=(0, 0, 0),
|
53 |
-
bias=True), nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum),
|
54 |
-
nn.ReLU(inplace=True),
|
55 |
-
nn.Conv3d(
|
56 |
-
num_feat + 2 * num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
|
57 |
-
|
58 |
-
def forward(self, x):
|
59 |
-
"""
|
60 |
-
Args:
|
61 |
-
x (Tensor): Input tensor with shape (b, num_feat, t, h, w).
|
62 |
-
|
63 |
-
Returns:
|
64 |
-
Tensor: Output with shape (b, num_feat + num_grow_ch * 3, 1, h, w).
|
65 |
-
"""
|
66 |
-
x1 = self.temporal_reduce1(x)
|
67 |
-
x1 = torch.cat((x[:, :, 1:-1, :, :], x1), 1)
|
68 |
-
|
69 |
-
x2 = self.temporal_reduce2(x1)
|
70 |
-
x2 = torch.cat((x1[:, :, 1:-1, :, :], x2), 1)
|
71 |
-
|
72 |
-
x3 = self.temporal_reduce3(x2)
|
73 |
-
x3 = torch.cat((x2[:, :, 1:-1, :, :], x3), 1)
|
74 |
-
|
75 |
-
return x3
|
76 |
-
|
77 |
-
|
78 |
-
class DenseBlocks(nn.Module):
|
79 |
-
""" A concatenation of N dense blocks.
|
80 |
-
|
81 |
-
Args:
|
82 |
-
num_feat (int): Number of channels in the blocks. Default: 64.
|
83 |
-
num_grow_ch (int): Growing factor of the dense blocks. Default: 32.
|
84 |
-
num_block (int): Number of dense blocks. The values are:
|
85 |
-
DUF-S (16 layers): 3
|
86 |
-
DUF-M (18 layers): 9
|
87 |
-
DUF-L (52 layers): 21
|
88 |
-
adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation.
|
89 |
-
Set to false if you want to train from scratch. Default: False.
|
90 |
-
"""
|
91 |
-
|
92 |
-
def __init__(self, num_block, num_feat=64, num_grow_ch=16, adapt_official_weights=False):
|
93 |
-
super(DenseBlocks, self).__init__()
|
94 |
-
if adapt_official_weights:
|
95 |
-
eps = 1e-3
|
96 |
-
momentum = 1e-3
|
97 |
-
else: # pytorch default values
|
98 |
-
eps = 1e-05
|
99 |
-
momentum = 0.1
|
100 |
-
|
101 |
-
self.dense_blocks = nn.ModuleList()
|
102 |
-
for i in range(0, num_block):
|
103 |
-
self.dense_blocks.append(
|
104 |
-
nn.Sequential(
|
105 |
-
nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
|
106 |
-
nn.Conv3d(
|
107 |
-
num_feat + i * num_grow_ch,
|
108 |
-
num_feat + i * num_grow_ch, (1, 1, 1),
|
109 |
-
stride=(1, 1, 1),
|
110 |
-
padding=(0, 0, 0),
|
111 |
-
bias=True), nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum),
|
112 |
-
nn.ReLU(inplace=True),
|
113 |
-
nn.Conv3d(
|
114 |
-
num_feat + i * num_grow_ch,
|
115 |
-
num_grow_ch, (3, 3, 3),
|
116 |
-
stride=(1, 1, 1),
|
117 |
-
padding=(1, 1, 1),
|
118 |
-
bias=True)))
|
119 |
-
|
120 |
-
def forward(self, x):
|
121 |
-
"""
|
122 |
-
Args:
|
123 |
-
x (Tensor): Input tensor with shape (b, num_feat, t, h, w).
|
124 |
-
|
125 |
-
Returns:
|
126 |
-
Tensor: Output with shape (b, num_feat + num_block * num_grow_ch, t, h, w).
|
127 |
-
"""
|
128 |
-
for i in range(0, len(self.dense_blocks)):
|
129 |
-
y = self.dense_blocks[i](x)
|
130 |
-
x = torch.cat((x, y), 1)
|
131 |
-
return x
|
132 |
-
|
133 |
-
|
134 |
-
class DynamicUpsamplingFilter(nn.Module):
|
135 |
-
"""Dynamic upsampling filter used in DUF.
|
136 |
-
|
137 |
-
Reference: https://github.com/yhjo09/VSR-DUF
|
138 |
-
|
139 |
-
It only supports input with 3 channels. And it applies the same filters to 3 channels.
|
140 |
-
|
141 |
-
Args:
|
142 |
-
filter_size (tuple): Filter size of generated filters. The shape is (kh, kw). Default: (5, 5).
|
143 |
-
"""
|
144 |
-
|
145 |
-
def __init__(self, filter_size=(5, 5)):
|
146 |
-
super(DynamicUpsamplingFilter, self).__init__()
|
147 |
-
if not isinstance(filter_size, tuple):
|
148 |
-
raise TypeError(f'The type of filter_size must be tuple, but got type{filter_size}')
|
149 |
-
if len(filter_size) != 2:
|
150 |
-
raise ValueError(f'The length of filter size must be 2, but got {len(filter_size)}.')
|
151 |
-
# generate a local expansion filter, similar to im2col
|
152 |
-
self.filter_size = filter_size
|
153 |
-
filter_prod = np.prod(filter_size)
|
154 |
-
expansion_filter = torch.eye(int(filter_prod)).view(filter_prod, 1, *filter_size) # (kh*kw, 1, kh, kw)
|
155 |
-
self.expansion_filter = expansion_filter.repeat(3, 1, 1, 1) # repeat for all the 3 channels
|
156 |
-
|
157 |
-
def forward(self, x, filters):
|
158 |
-
"""Forward function for DynamicUpsamplingFilter.
|
159 |
-
|
160 |
-
Args:
|
161 |
-
x (Tensor): Input image with 3 channels. The shape is (n, 3, h, w).
|
162 |
-
filters (Tensor): Generated dynamic filters. The shape is (n, filter_prod, upsampling_square, h, w).
|
163 |
-
filter_prod: prod of filter kernel size, e.g., 1*5*5=25.
|
164 |
-
upsampling_square: similar to pixel shuffle, upsampling_square = upsampling * upsampling.
|
165 |
-
e.g., for x 4 upsampling, upsampling_square= 4*4 = 16
|
166 |
-
|
167 |
-
Returns:
|
168 |
-
Tensor: Filtered image with shape (n, 3*upsampling_square, h, w)
|
169 |
-
"""
|
170 |
-
n, filter_prod, upsampling_square, h, w = filters.size()
|
171 |
-
kh, kw = self.filter_size
|
172 |
-
expanded_input = F.conv2d(
|
173 |
-
x, self.expansion_filter.to(x), padding=(kh // 2, kw // 2), groups=3) # (n, 3*filter_prod, h, w)
|
174 |
-
expanded_input = expanded_input.view(n, 3, filter_prod, h, w).permute(0, 3, 4, 1,
|
175 |
-
2) # (n, h, w, 3, filter_prod)
|
176 |
-
filters = filters.permute(0, 3, 4, 1, 2) # (n, h, w, filter_prod, upsampling_square]
|
177 |
-
out = torch.matmul(expanded_input, filters) # (n, h, w, 3, upsampling_square)
|
178 |
-
return out.permute(0, 3, 4, 1, 2).view(n, 3 * upsampling_square, h, w)
|
179 |
-
|
180 |
-
|
181 |
-
@ARCH_REGISTRY.register()
|
182 |
-
class DUF(nn.Module):
|
183 |
-
"""Network architecture for DUF
|
184 |
-
|
185 |
-
``Paper: Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation``
|
186 |
-
|
187 |
-
Reference: https://github.com/yhjo09/VSR-DUF
|
188 |
-
|
189 |
-
For all the models below, 'adapt_official_weights' is only necessary when
|
190 |
-
loading the weights converted from the official TensorFlow weights.
|
191 |
-
Please set it to False if you are training the model from scratch.
|
192 |
-
|
193 |
-
There are three models with different model size: DUF16Layers, DUF28Layers,
|
194 |
-
and DUF52Layers. This class is the base class for these models.
|
195 |
-
|
196 |
-
Args:
|
197 |
-
scale (int): The upsampling factor. Default: 4.
|
198 |
-
num_layer (int): The number of layers. Default: 52.
|
199 |
-
adapt_official_weights_weights (bool): Whether to adapt the weights
|
200 |
-
translated from the official implementation. Set to false if you
|
201 |
-
want to train from scratch. Default: False.
|
202 |
-
"""
|
203 |
-
|
204 |
-
def __init__(self, scale=4, num_layer=52, adapt_official_weights=False):
|
205 |
-
super(DUF, self).__init__()
|
206 |
-
self.scale = scale
|
207 |
-
if adapt_official_weights:
|
208 |
-
eps = 1e-3
|
209 |
-
momentum = 1e-3
|
210 |
-
else: # pytorch default values
|
211 |
-
eps = 1e-05
|
212 |
-
momentum = 0.1
|
213 |
-
|
214 |
-
self.conv3d1 = nn.Conv3d(3, 64, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)
|
215 |
-
self.dynamic_filter = DynamicUpsamplingFilter((5, 5))
|
216 |
-
|
217 |
-
if num_layer == 16:
|
218 |
-
num_block = 3
|
219 |
-
num_grow_ch = 32
|
220 |
-
elif num_layer == 28:
|
221 |
-
num_block = 9
|
222 |
-
num_grow_ch = 16
|
223 |
-
elif num_layer == 52:
|
224 |
-
num_block = 21
|
225 |
-
num_grow_ch = 16
|
226 |
-
else:
|
227 |
-
raise ValueError(f'Only supported (16, 28, 52) layers, but got {num_layer}.')
|
228 |
-
|
229 |
-
self.dense_block1 = DenseBlocks(
|
230 |
-
num_block=num_block, num_feat=64, num_grow_ch=num_grow_ch,
|
231 |
-
adapt_official_weights=adapt_official_weights) # T = 7
|
232 |
-
self.dense_block2 = DenseBlocksTemporalReduce(
|
233 |
-
64 + num_grow_ch * num_block, num_grow_ch, adapt_official_weights=adapt_official_weights) # T = 1
|
234 |
-
channels = 64 + num_grow_ch * num_block + num_grow_ch * 3
|
235 |
-
self.bn3d2 = nn.BatchNorm3d(channels, eps=eps, momentum=momentum)
|
236 |
-
self.conv3d2 = nn.Conv3d(channels, 256, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)
|
237 |
-
|
238 |
-
self.conv3d_r1 = nn.Conv3d(256, 256, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
|
239 |
-
self.conv3d_r2 = nn.Conv3d(256, 3 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
|
240 |
-
|
241 |
-
self.conv3d_f1 = nn.Conv3d(256, 512, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
|
242 |
-
self.conv3d_f2 = nn.Conv3d(
|
243 |
-
512, 1 * 5 * 5 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
|
244 |
-
|
245 |
-
def forward(self, x):
|
246 |
-
"""
|
247 |
-
Args:
|
248 |
-
x (Tensor): Input with shape (b, 7, c, h, w)
|
249 |
-
|
250 |
-
Returns:
|
251 |
-
Tensor: Output with shape (b, c, h * scale, w * scale)
|
252 |
-
"""
|
253 |
-
num_batches, num_imgs, _, h, w = x.size()
|
254 |
-
|
255 |
-
x = x.permute(0, 2, 1, 3, 4) # (b, c, 7, h, w) for Conv3D
|
256 |
-
x_center = x[:, :, num_imgs // 2, :, :]
|
257 |
-
|
258 |
-
x = self.conv3d1(x)
|
259 |
-
x = self.dense_block1(x)
|
260 |
-
x = self.dense_block2(x)
|
261 |
-
x = F.relu(self.bn3d2(x), inplace=True)
|
262 |
-
x = F.relu(self.conv3d2(x), inplace=True)
|
263 |
-
|
264 |
-
# residual image
|
265 |
-
res = self.conv3d_r2(F.relu(self.conv3d_r1(x), inplace=True))
|
266 |
-
|
267 |
-
# filter
|
268 |
-
filter_ = self.conv3d_f2(F.relu(self.conv3d_f1(x), inplace=True))
|
269 |
-
filter_ = F.softmax(filter_.view(num_batches, 25, self.scale**2, h, w), dim=1)
|
270 |
-
|
271 |
-
# dynamic filter
|
272 |
-
out = self.dynamic_filter(x_center, filter_)
|
273 |
-
out += res.squeeze_(2)
|
274 |
-
out = F.pixel_shuffle(out, self.scale)
|
275 |
-
|
276 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/ecbsr_arch.py
DELETED
@@ -1,275 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
6 |
-
|
7 |
-
|
8 |
-
class SeqConv3x3(nn.Module):
|
9 |
-
"""The re-parameterizable block used in the ECBSR architecture.
|
10 |
-
|
11 |
-
``Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices``
|
12 |
-
|
13 |
-
Reference: https://github.com/xindongzhang/ECBSR
|
14 |
-
|
15 |
-
Args:
|
16 |
-
seq_type (str): Sequence type, option: conv1x1-conv3x3 | conv1x1-sobelx | conv1x1-sobely | conv1x1-laplacian.
|
17 |
-
in_channels (int): Channel number of input.
|
18 |
-
out_channels (int): Channel number of output.
|
19 |
-
depth_multiplier (int): Width multiplier in the expand-and-squeeze conv. Default: 1.
|
20 |
-
"""
|
21 |
-
|
22 |
-
def __init__(self, seq_type, in_channels, out_channels, depth_multiplier=1):
|
23 |
-
super(SeqConv3x3, self).__init__()
|
24 |
-
self.seq_type = seq_type
|
25 |
-
self.in_channels = in_channels
|
26 |
-
self.out_channels = out_channels
|
27 |
-
|
28 |
-
if self.seq_type == 'conv1x1-conv3x3':
|
29 |
-
self.mid_planes = int(out_channels * depth_multiplier)
|
30 |
-
conv0 = torch.nn.Conv2d(self.in_channels, self.mid_planes, kernel_size=1, padding=0)
|
31 |
-
self.k0 = conv0.weight
|
32 |
-
self.b0 = conv0.bias
|
33 |
-
|
34 |
-
conv1 = torch.nn.Conv2d(self.mid_planes, self.out_channels, kernel_size=3)
|
35 |
-
self.k1 = conv1.weight
|
36 |
-
self.b1 = conv1.bias
|
37 |
-
|
38 |
-
elif self.seq_type == 'conv1x1-sobelx':
|
39 |
-
conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
|
40 |
-
self.k0 = conv0.weight
|
41 |
-
self.b0 = conv0.bias
|
42 |
-
|
43 |
-
# init scale and bias
|
44 |
-
scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
|
45 |
-
self.scale = nn.Parameter(scale)
|
46 |
-
bias = torch.randn(self.out_channels) * 1e-3
|
47 |
-
bias = torch.reshape(bias, (self.out_channels, ))
|
48 |
-
self.bias = nn.Parameter(bias)
|
49 |
-
# init mask
|
50 |
-
self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
|
51 |
-
for i in range(self.out_channels):
|
52 |
-
self.mask[i, 0, 0, 0] = 1.0
|
53 |
-
self.mask[i, 0, 1, 0] = 2.0
|
54 |
-
self.mask[i, 0, 2, 0] = 1.0
|
55 |
-
self.mask[i, 0, 0, 2] = -1.0
|
56 |
-
self.mask[i, 0, 1, 2] = -2.0
|
57 |
-
self.mask[i, 0, 2, 2] = -1.0
|
58 |
-
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
|
59 |
-
|
60 |
-
elif self.seq_type == 'conv1x1-sobely':
|
61 |
-
conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
|
62 |
-
self.k0 = conv0.weight
|
63 |
-
self.b0 = conv0.bias
|
64 |
-
|
65 |
-
# init scale and bias
|
66 |
-
scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
|
67 |
-
self.scale = nn.Parameter(torch.FloatTensor(scale))
|
68 |
-
bias = torch.randn(self.out_channels) * 1e-3
|
69 |
-
bias = torch.reshape(bias, (self.out_channels, ))
|
70 |
-
self.bias = nn.Parameter(torch.FloatTensor(bias))
|
71 |
-
# init mask
|
72 |
-
self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
|
73 |
-
for i in range(self.out_channels):
|
74 |
-
self.mask[i, 0, 0, 0] = 1.0
|
75 |
-
self.mask[i, 0, 0, 1] = 2.0
|
76 |
-
self.mask[i, 0, 0, 2] = 1.0
|
77 |
-
self.mask[i, 0, 2, 0] = -1.0
|
78 |
-
self.mask[i, 0, 2, 1] = -2.0
|
79 |
-
self.mask[i, 0, 2, 2] = -1.0
|
80 |
-
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
|
81 |
-
|
82 |
-
elif self.seq_type == 'conv1x1-laplacian':
|
83 |
-
conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
|
84 |
-
self.k0 = conv0.weight
|
85 |
-
self.b0 = conv0.bias
|
86 |
-
|
87 |
-
# init scale and bias
|
88 |
-
scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
|
89 |
-
self.scale = nn.Parameter(torch.FloatTensor(scale))
|
90 |
-
bias = torch.randn(self.out_channels) * 1e-3
|
91 |
-
bias = torch.reshape(bias, (self.out_channels, ))
|
92 |
-
self.bias = nn.Parameter(torch.FloatTensor(bias))
|
93 |
-
# init mask
|
94 |
-
self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
|
95 |
-
for i in range(self.out_channels):
|
96 |
-
self.mask[i, 0, 0, 1] = 1.0
|
97 |
-
self.mask[i, 0, 1, 0] = 1.0
|
98 |
-
self.mask[i, 0, 1, 2] = 1.0
|
99 |
-
self.mask[i, 0, 2, 1] = 1.0
|
100 |
-
self.mask[i, 0, 1, 1] = -4.0
|
101 |
-
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
|
102 |
-
else:
|
103 |
-
raise ValueError('The type of seqconv is not supported!')
|
104 |
-
|
105 |
-
def forward(self, x):
|
106 |
-
if self.seq_type == 'conv1x1-conv3x3':
|
107 |
-
# conv-1x1
|
108 |
-
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
|
109 |
-
# explicitly padding with bias
|
110 |
-
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
|
111 |
-
b0_pad = self.b0.view(1, -1, 1, 1)
|
112 |
-
y0[:, :, 0:1, :] = b0_pad
|
113 |
-
y0[:, :, -1:, :] = b0_pad
|
114 |
-
y0[:, :, :, 0:1] = b0_pad
|
115 |
-
y0[:, :, :, -1:] = b0_pad
|
116 |
-
# conv-3x3
|
117 |
-
y1 = F.conv2d(input=y0, weight=self.k1, bias=self.b1, stride=1)
|
118 |
-
else:
|
119 |
-
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
|
120 |
-
# explicitly padding with bias
|
121 |
-
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
|
122 |
-
b0_pad = self.b0.view(1, -1, 1, 1)
|
123 |
-
y0[:, :, 0:1, :] = b0_pad
|
124 |
-
y0[:, :, -1:, :] = b0_pad
|
125 |
-
y0[:, :, :, 0:1] = b0_pad
|
126 |
-
y0[:, :, :, -1:] = b0_pad
|
127 |
-
# conv-3x3
|
128 |
-
y1 = F.conv2d(input=y0, weight=self.scale * self.mask, bias=self.bias, stride=1, groups=self.out_channels)
|
129 |
-
return y1
|
130 |
-
|
131 |
-
def rep_params(self):
|
132 |
-
device = self.k0.get_device()
|
133 |
-
if device < 0:
|
134 |
-
device = None
|
135 |
-
|
136 |
-
if self.seq_type == 'conv1x1-conv3x3':
|
137 |
-
# re-param conv kernel
|
138 |
-
rep_weight = F.conv2d(input=self.k1, weight=self.k0.permute(1, 0, 2, 3))
|
139 |
-
# re-param conv bias
|
140 |
-
rep_bias = torch.ones(1, self.mid_planes, 3, 3, device=device) * self.b0.view(1, -1, 1, 1)
|
141 |
-
rep_bias = F.conv2d(input=rep_bias, weight=self.k1).view(-1, ) + self.b1
|
142 |
-
else:
|
143 |
-
tmp = self.scale * self.mask
|
144 |
-
k1 = torch.zeros((self.out_channels, self.out_channels, 3, 3), device=device)
|
145 |
-
for i in range(self.out_channels):
|
146 |
-
k1[i, i, :, :] = tmp[i, 0, :, :]
|
147 |
-
b1 = self.bias
|
148 |
-
# re-param conv kernel
|
149 |
-
rep_weight = F.conv2d(input=k1, weight=self.k0.permute(1, 0, 2, 3))
|
150 |
-
# re-param conv bias
|
151 |
-
rep_bias = torch.ones(1, self.out_channels, 3, 3, device=device) * self.b0.view(1, -1, 1, 1)
|
152 |
-
rep_bias = F.conv2d(input=rep_bias, weight=k1).view(-1, ) + b1
|
153 |
-
return rep_weight, rep_bias
|
154 |
-
|
155 |
-
|
156 |
-
class ECB(nn.Module):
|
157 |
-
"""The ECB block used in the ECBSR architecture.
|
158 |
-
|
159 |
-
Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
|
160 |
-
Ref git repo: https://github.com/xindongzhang/ECBSR
|
161 |
-
|
162 |
-
Args:
|
163 |
-
in_channels (int): Channel number of input.
|
164 |
-
out_channels (int): Channel number of output.
|
165 |
-
depth_multiplier (int): Width multiplier in the expand-and-squeeze conv. Default: 1.
|
166 |
-
act_type (str): Activation type. Option: prelu | relu | rrelu | softplus | linear. Default: prelu.
|
167 |
-
with_idt (bool): Whether to use identity connection. Default: False.
|
168 |
-
"""
|
169 |
-
|
170 |
-
def __init__(self, in_channels, out_channels, depth_multiplier, act_type='prelu', with_idt=False):
|
171 |
-
super(ECB, self).__init__()
|
172 |
-
|
173 |
-
self.depth_multiplier = depth_multiplier
|
174 |
-
self.in_channels = in_channels
|
175 |
-
self.out_channels = out_channels
|
176 |
-
self.act_type = act_type
|
177 |
-
|
178 |
-
if with_idt and (self.in_channels == self.out_channels):
|
179 |
-
self.with_idt = True
|
180 |
-
else:
|
181 |
-
self.with_idt = False
|
182 |
-
|
183 |
-
self.conv3x3 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=3, padding=1)
|
184 |
-
self.conv1x1_3x3 = SeqConv3x3('conv1x1-conv3x3', self.in_channels, self.out_channels, self.depth_multiplier)
|
185 |
-
self.conv1x1_sbx = SeqConv3x3('conv1x1-sobelx', self.in_channels, self.out_channels)
|
186 |
-
self.conv1x1_sby = SeqConv3x3('conv1x1-sobely', self.in_channels, self.out_channels)
|
187 |
-
self.conv1x1_lpl = SeqConv3x3('conv1x1-laplacian', self.in_channels, self.out_channels)
|
188 |
-
|
189 |
-
if self.act_type == 'prelu':
|
190 |
-
self.act = nn.PReLU(num_parameters=self.out_channels)
|
191 |
-
elif self.act_type == 'relu':
|
192 |
-
self.act = nn.ReLU(inplace=True)
|
193 |
-
elif self.act_type == 'rrelu':
|
194 |
-
self.act = nn.RReLU(lower=-0.05, upper=0.05)
|
195 |
-
elif self.act_type == 'softplus':
|
196 |
-
self.act = nn.Softplus()
|
197 |
-
elif self.act_type == 'linear':
|
198 |
-
pass
|
199 |
-
else:
|
200 |
-
raise ValueError('The type of activation if not support!')
|
201 |
-
|
202 |
-
def forward(self, x):
|
203 |
-
if self.training:
|
204 |
-
y = self.conv3x3(x) + self.conv1x1_3x3(x) + self.conv1x1_sbx(x) + self.conv1x1_sby(x) + self.conv1x1_lpl(x)
|
205 |
-
if self.with_idt:
|
206 |
-
y += x
|
207 |
-
else:
|
208 |
-
rep_weight, rep_bias = self.rep_params()
|
209 |
-
y = F.conv2d(input=x, weight=rep_weight, bias=rep_bias, stride=1, padding=1)
|
210 |
-
if self.act_type != 'linear':
|
211 |
-
y = self.act(y)
|
212 |
-
return y
|
213 |
-
|
214 |
-
def rep_params(self):
|
215 |
-
weight0, bias0 = self.conv3x3.weight, self.conv3x3.bias
|
216 |
-
weight1, bias1 = self.conv1x1_3x3.rep_params()
|
217 |
-
weight2, bias2 = self.conv1x1_sbx.rep_params()
|
218 |
-
weight3, bias3 = self.conv1x1_sby.rep_params()
|
219 |
-
weight4, bias4 = self.conv1x1_lpl.rep_params()
|
220 |
-
rep_weight, rep_bias = (weight0 + weight1 + weight2 + weight3 + weight4), (
|
221 |
-
bias0 + bias1 + bias2 + bias3 + bias4)
|
222 |
-
|
223 |
-
if self.with_idt:
|
224 |
-
device = rep_weight.get_device()
|
225 |
-
if device < 0:
|
226 |
-
device = None
|
227 |
-
weight_idt = torch.zeros(self.out_channels, self.out_channels, 3, 3, device=device)
|
228 |
-
for i in range(self.out_channels):
|
229 |
-
weight_idt[i, i, 1, 1] = 1.0
|
230 |
-
bias_idt = 0.0
|
231 |
-
rep_weight, rep_bias = rep_weight + weight_idt, rep_bias + bias_idt
|
232 |
-
return rep_weight, rep_bias
|
233 |
-
|
234 |
-
|
235 |
-
@ARCH_REGISTRY.register()
|
236 |
-
class ECBSR(nn.Module):
|
237 |
-
"""ECBSR architecture.
|
238 |
-
|
239 |
-
Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
|
240 |
-
Ref git repo: https://github.com/xindongzhang/ECBSR
|
241 |
-
|
242 |
-
Args:
|
243 |
-
num_in_ch (int): Channel number of inputs.
|
244 |
-
num_out_ch (int): Channel number of outputs.
|
245 |
-
num_block (int): Block number in the trunk network.
|
246 |
-
num_channel (int): Channel number.
|
247 |
-
with_idt (bool): Whether use identity in convolution layers.
|
248 |
-
act_type (str): Activation type.
|
249 |
-
scale (int): Upsampling factor.
|
250 |
-
"""
|
251 |
-
|
252 |
-
def __init__(self, num_in_ch, num_out_ch, num_block, num_channel, with_idt, act_type, scale):
|
253 |
-
super(ECBSR, self).__init__()
|
254 |
-
self.num_in_ch = num_in_ch
|
255 |
-
self.scale = scale
|
256 |
-
|
257 |
-
backbone = []
|
258 |
-
backbone += [ECB(num_in_ch, num_channel, depth_multiplier=2.0, act_type=act_type, with_idt=with_idt)]
|
259 |
-
for _ in range(num_block):
|
260 |
-
backbone += [ECB(num_channel, num_channel, depth_multiplier=2.0, act_type=act_type, with_idt=with_idt)]
|
261 |
-
backbone += [
|
262 |
-
ECB(num_channel, num_out_ch * scale * scale, depth_multiplier=2.0, act_type='linear', with_idt=with_idt)
|
263 |
-
]
|
264 |
-
|
265 |
-
self.backbone = nn.Sequential(*backbone)
|
266 |
-
self.upsampler = nn.PixelShuffle(scale)
|
267 |
-
|
268 |
-
def forward(self, x):
|
269 |
-
if self.num_in_ch > 1:
|
270 |
-
shortcut = torch.repeat_interleave(x, self.scale * self.scale, dim=1)
|
271 |
-
else:
|
272 |
-
shortcut = x # will repeat the input in the channel dimension (repeat scale * scale times)
|
273 |
-
y = self.backbone(x) + shortcut
|
274 |
-
y = self.upsampler(y)
|
275 |
-
return y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/edsr_arch.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn as nn
|
3 |
-
|
4 |
-
from basicsr.archs.arch_util import ResidualBlockNoBN, Upsample, make_layer
|
5 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
6 |
-
|
7 |
-
|
8 |
-
@ARCH_REGISTRY.register()
|
9 |
-
class EDSR(nn.Module):
|
10 |
-
"""EDSR network structure.
|
11 |
-
|
12 |
-
Paper: Enhanced Deep Residual Networks for Single Image Super-Resolution.
|
13 |
-
Ref git repo: https://github.com/thstkdgus35/EDSR-PyTorch
|
14 |
-
|
15 |
-
Args:
|
16 |
-
num_in_ch (int): Channel number of inputs.
|
17 |
-
num_out_ch (int): Channel number of outputs.
|
18 |
-
num_feat (int): Channel number of intermediate features.
|
19 |
-
Default: 64.
|
20 |
-
num_block (int): Block number in the trunk network. Default: 16.
|
21 |
-
upscale (int): Upsampling factor. Support 2^n and 3.
|
22 |
-
Default: 4.
|
23 |
-
res_scale (float): Used to scale the residual in residual block.
|
24 |
-
Default: 1.
|
25 |
-
img_range (float): Image range. Default: 255.
|
26 |
-
rgb_mean (tuple[float]): Image mean in RGB orders.
|
27 |
-
Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
|
28 |
-
"""
|
29 |
-
|
30 |
-
def __init__(self,
|
31 |
-
num_in_ch,
|
32 |
-
num_out_ch,
|
33 |
-
num_feat=64,
|
34 |
-
num_block=16,
|
35 |
-
upscale=4,
|
36 |
-
res_scale=1,
|
37 |
-
img_range=255.,
|
38 |
-
rgb_mean=(0.4488, 0.4371, 0.4040)):
|
39 |
-
super(EDSR, self).__init__()
|
40 |
-
|
41 |
-
self.img_range = img_range
|
42 |
-
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
43 |
-
|
44 |
-
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
45 |
-
self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat, res_scale=res_scale, pytorch_init=True)
|
46 |
-
self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
47 |
-
self.upsample = Upsample(upscale, num_feat)
|
48 |
-
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
49 |
-
|
50 |
-
def forward(self, x):
|
51 |
-
self.mean = self.mean.type_as(x)
|
52 |
-
|
53 |
-
x = (x - self.mean) * self.img_range
|
54 |
-
x = self.conv_first(x)
|
55 |
-
res = self.conv_after_body(self.body(x))
|
56 |
-
res += x
|
57 |
-
|
58 |
-
x = self.conv_last(self.upsample(res))
|
59 |
-
x = x / self.img_range + self.mean
|
60 |
-
|
61 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/edvr_arch.py
DELETED
@@ -1,382 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn as nn
|
3 |
-
from torch.nn import functional as F
|
4 |
-
|
5 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
6 |
-
from .arch_util import DCNv2Pack, ResidualBlockNoBN, make_layer
|
7 |
-
|
8 |
-
|
9 |
-
class PCDAlignment(nn.Module):
|
10 |
-
"""Alignment module using Pyramid, Cascading and Deformable convolution
|
11 |
-
(PCD). It is used in EDVR.
|
12 |
-
|
13 |
-
``Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks``
|
14 |
-
|
15 |
-
Args:
|
16 |
-
num_feat (int): Channel number of middle features. Default: 64.
|
17 |
-
deformable_groups (int): Deformable groups. Defaults: 8.
|
18 |
-
"""
|
19 |
-
|
20 |
-
def __init__(self, num_feat=64, deformable_groups=8):
|
21 |
-
super(PCDAlignment, self).__init__()
|
22 |
-
|
23 |
-
# Pyramid has three levels:
|
24 |
-
# L3: level 3, 1/4 spatial size
|
25 |
-
# L2: level 2, 1/2 spatial size
|
26 |
-
# L1: level 1, original spatial size
|
27 |
-
self.offset_conv1 = nn.ModuleDict()
|
28 |
-
self.offset_conv2 = nn.ModuleDict()
|
29 |
-
self.offset_conv3 = nn.ModuleDict()
|
30 |
-
self.dcn_pack = nn.ModuleDict()
|
31 |
-
self.feat_conv = nn.ModuleDict()
|
32 |
-
|
33 |
-
# Pyramids
|
34 |
-
for i in range(3, 0, -1):
|
35 |
-
level = f'l{i}'
|
36 |
-
self.offset_conv1[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
|
37 |
-
if i == 3:
|
38 |
-
self.offset_conv2[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
39 |
-
else:
|
40 |
-
self.offset_conv2[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
|
41 |
-
self.offset_conv3[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
42 |
-
self.dcn_pack[level] = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)
|
43 |
-
|
44 |
-
if i < 3:
|
45 |
-
self.feat_conv[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
|
46 |
-
|
47 |
-
# Cascading dcn
|
48 |
-
self.cas_offset_conv1 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
|
49 |
-
self.cas_offset_conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
50 |
-
self.cas_dcnpack = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)
|
51 |
-
|
52 |
-
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
|
53 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
54 |
-
|
55 |
-
def forward(self, nbr_feat_l, ref_feat_l):
|
56 |
-
"""Align neighboring frame features to the reference frame features.
|
57 |
-
|
58 |
-
Args:
|
59 |
-
nbr_feat_l (list[Tensor]): Neighboring feature list. It
|
60 |
-
contains three pyramid levels (L1, L2, L3),
|
61 |
-
each with shape (b, c, h, w).
|
62 |
-
ref_feat_l (list[Tensor]): Reference feature list. It
|
63 |
-
contains three pyramid levels (L1, L2, L3),
|
64 |
-
each with shape (b, c, h, w).
|
65 |
-
|
66 |
-
Returns:
|
67 |
-
Tensor: Aligned features.
|
68 |
-
"""
|
69 |
-
# Pyramids
|
70 |
-
upsampled_offset, upsampled_feat = None, None
|
71 |
-
for i in range(3, 0, -1):
|
72 |
-
level = f'l{i}'
|
73 |
-
offset = torch.cat([nbr_feat_l[i - 1], ref_feat_l[i - 1]], dim=1)
|
74 |
-
offset = self.lrelu(self.offset_conv1[level](offset))
|
75 |
-
if i == 3:
|
76 |
-
offset = self.lrelu(self.offset_conv2[level](offset))
|
77 |
-
else:
|
78 |
-
offset = self.lrelu(self.offset_conv2[level](torch.cat([offset, upsampled_offset], dim=1)))
|
79 |
-
offset = self.lrelu(self.offset_conv3[level](offset))
|
80 |
-
|
81 |
-
feat = self.dcn_pack[level](nbr_feat_l[i - 1], offset)
|
82 |
-
if i < 3:
|
83 |
-
feat = self.feat_conv[level](torch.cat([feat, upsampled_feat], dim=1))
|
84 |
-
if i > 1:
|
85 |
-
feat = self.lrelu(feat)
|
86 |
-
|
87 |
-
if i > 1: # upsample offset and features
|
88 |
-
# x2: when we upsample the offset, we should also enlarge
|
89 |
-
# the magnitude.
|
90 |
-
upsampled_offset = self.upsample(offset) * 2
|
91 |
-
upsampled_feat = self.upsample(feat)
|
92 |
-
|
93 |
-
# Cascading
|
94 |
-
offset = torch.cat([feat, ref_feat_l[0]], dim=1)
|
95 |
-
offset = self.lrelu(self.cas_offset_conv2(self.lrelu(self.cas_offset_conv1(offset))))
|
96 |
-
feat = self.lrelu(self.cas_dcnpack(feat, offset))
|
97 |
-
return feat
|
98 |
-
|
99 |
-
|
100 |
-
class TSAFusion(nn.Module):
|
101 |
-
"""Temporal Spatial Attention (TSA) fusion module.
|
102 |
-
|
103 |
-
Temporal: Calculate the correlation between center frame and
|
104 |
-
neighboring frames;
|
105 |
-
Spatial: It has 3 pyramid levels, the attention is similar to SFT.
|
106 |
-
(SFT: Recovering realistic texture in image super-resolution by deep
|
107 |
-
spatial feature transform.)
|
108 |
-
|
109 |
-
Args:
|
110 |
-
num_feat (int): Channel number of middle features. Default: 64.
|
111 |
-
num_frame (int): Number of frames. Default: 5.
|
112 |
-
center_frame_idx (int): The index of center frame. Default: 2.
|
113 |
-
"""
|
114 |
-
|
115 |
-
def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2):
|
116 |
-
super(TSAFusion, self).__init__()
|
117 |
-
self.center_frame_idx = center_frame_idx
|
118 |
-
# temporal attention (before fusion conv)
|
119 |
-
self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
120 |
-
self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
121 |
-
self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
|
122 |
-
|
123 |
-
# spatial attention (after fusion conv)
|
124 |
-
self.max_pool = nn.MaxPool2d(3, stride=2, padding=1)
|
125 |
-
self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)
|
126 |
-
self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1)
|
127 |
-
self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1)
|
128 |
-
self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
129 |
-
self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1)
|
130 |
-
self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
131 |
-
self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1)
|
132 |
-
self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
|
133 |
-
self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
134 |
-
self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1)
|
135 |
-
self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1)
|
136 |
-
|
137 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
138 |
-
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
|
139 |
-
|
140 |
-
def forward(self, aligned_feat):
|
141 |
-
"""
|
142 |
-
Args:
|
143 |
-
aligned_feat (Tensor): Aligned features with shape (b, t, c, h, w).
|
144 |
-
|
145 |
-
Returns:
|
146 |
-
Tensor: Features after TSA with the shape (b, c, h, w).
|
147 |
-
"""
|
148 |
-
b, t, c, h, w = aligned_feat.size()
|
149 |
-
# temporal attention
|
150 |
-
embedding_ref = self.temporal_attn1(aligned_feat[:, self.center_frame_idx, :, :, :].clone())
|
151 |
-
embedding = self.temporal_attn2(aligned_feat.view(-1, c, h, w))
|
152 |
-
embedding = embedding.view(b, t, -1, h, w) # (b, t, c, h, w)
|
153 |
-
|
154 |
-
corr_l = [] # correlation list
|
155 |
-
for i in range(t):
|
156 |
-
emb_neighbor = embedding[:, i, :, :, :]
|
157 |
-
corr = torch.sum(emb_neighbor * embedding_ref, 1) # (b, h, w)
|
158 |
-
corr_l.append(corr.unsqueeze(1)) # (b, 1, h, w)
|
159 |
-
corr_prob = torch.sigmoid(torch.cat(corr_l, dim=1)) # (b, t, h, w)
|
160 |
-
corr_prob = corr_prob.unsqueeze(2).expand(b, t, c, h, w)
|
161 |
-
corr_prob = corr_prob.contiguous().view(b, -1, h, w) # (b, t*c, h, w)
|
162 |
-
aligned_feat = aligned_feat.view(b, -1, h, w) * corr_prob
|
163 |
-
|
164 |
-
# fusion
|
165 |
-
feat = self.lrelu(self.feat_fusion(aligned_feat))
|
166 |
-
|
167 |
-
# spatial attention
|
168 |
-
attn = self.lrelu(self.spatial_attn1(aligned_feat))
|
169 |
-
attn_max = self.max_pool(attn)
|
170 |
-
attn_avg = self.avg_pool(attn)
|
171 |
-
attn = self.lrelu(self.spatial_attn2(torch.cat([attn_max, attn_avg], dim=1)))
|
172 |
-
# pyramid levels
|
173 |
-
attn_level = self.lrelu(self.spatial_attn_l1(attn))
|
174 |
-
attn_max = self.max_pool(attn_level)
|
175 |
-
attn_avg = self.avg_pool(attn_level)
|
176 |
-
attn_level = self.lrelu(self.spatial_attn_l2(torch.cat([attn_max, attn_avg], dim=1)))
|
177 |
-
attn_level = self.lrelu(self.spatial_attn_l3(attn_level))
|
178 |
-
attn_level = self.upsample(attn_level)
|
179 |
-
|
180 |
-
attn = self.lrelu(self.spatial_attn3(attn)) + attn_level
|
181 |
-
attn = self.lrelu(self.spatial_attn4(attn))
|
182 |
-
attn = self.upsample(attn)
|
183 |
-
attn = self.spatial_attn5(attn)
|
184 |
-
attn_add = self.spatial_attn_add2(self.lrelu(self.spatial_attn_add1(attn)))
|
185 |
-
attn = torch.sigmoid(attn)
|
186 |
-
|
187 |
-
# after initialization, * 2 makes (attn * 2) to be close to 1.
|
188 |
-
feat = feat * attn * 2 + attn_add
|
189 |
-
return feat
|
190 |
-
|
191 |
-
|
192 |
-
class PredeblurModule(nn.Module):
|
193 |
-
"""Pre-dublur module.
|
194 |
-
|
195 |
-
Args:
|
196 |
-
num_in_ch (int): Channel number of input image. Default: 3.
|
197 |
-
num_feat (int): Channel number of intermediate features. Default: 64.
|
198 |
-
hr_in (bool): Whether the input has high resolution. Default: False.
|
199 |
-
"""
|
200 |
-
|
201 |
-
def __init__(self, num_in_ch=3, num_feat=64, hr_in=False):
|
202 |
-
super(PredeblurModule, self).__init__()
|
203 |
-
self.hr_in = hr_in
|
204 |
-
|
205 |
-
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
206 |
-
if self.hr_in:
|
207 |
-
# downsample x4 by stride conv
|
208 |
-
self.stride_conv_hr1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
209 |
-
self.stride_conv_hr2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
210 |
-
|
211 |
-
# generate feature pyramid
|
212 |
-
self.stride_conv_l2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
213 |
-
self.stride_conv_l3 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
214 |
-
|
215 |
-
self.resblock_l3 = ResidualBlockNoBN(num_feat=num_feat)
|
216 |
-
self.resblock_l2_1 = ResidualBlockNoBN(num_feat=num_feat)
|
217 |
-
self.resblock_l2_2 = ResidualBlockNoBN(num_feat=num_feat)
|
218 |
-
self.resblock_l1 = nn.ModuleList([ResidualBlockNoBN(num_feat=num_feat) for i in range(5)])
|
219 |
-
|
220 |
-
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
|
221 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
222 |
-
|
223 |
-
def forward(self, x):
|
224 |
-
feat_l1 = self.lrelu(self.conv_first(x))
|
225 |
-
if self.hr_in:
|
226 |
-
feat_l1 = self.lrelu(self.stride_conv_hr1(feat_l1))
|
227 |
-
feat_l1 = self.lrelu(self.stride_conv_hr2(feat_l1))
|
228 |
-
|
229 |
-
# generate feature pyramid
|
230 |
-
feat_l2 = self.lrelu(self.stride_conv_l2(feat_l1))
|
231 |
-
feat_l3 = self.lrelu(self.stride_conv_l3(feat_l2))
|
232 |
-
|
233 |
-
feat_l3 = self.upsample(self.resblock_l3(feat_l3))
|
234 |
-
feat_l2 = self.resblock_l2_1(feat_l2) + feat_l3
|
235 |
-
feat_l2 = self.upsample(self.resblock_l2_2(feat_l2))
|
236 |
-
|
237 |
-
for i in range(2):
|
238 |
-
feat_l1 = self.resblock_l1[i](feat_l1)
|
239 |
-
feat_l1 = feat_l1 + feat_l2
|
240 |
-
for i in range(2, 5):
|
241 |
-
feat_l1 = self.resblock_l1[i](feat_l1)
|
242 |
-
return feat_l1
|
243 |
-
|
244 |
-
|
245 |
-
@ARCH_REGISTRY.register()
|
246 |
-
class EDVR(nn.Module):
|
247 |
-
"""EDVR network structure for video super-resolution.
|
248 |
-
|
249 |
-
Now only support X4 upsampling factor.
|
250 |
-
|
251 |
-
``Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks``
|
252 |
-
|
253 |
-
Args:
|
254 |
-
num_in_ch (int): Channel number of input image. Default: 3.
|
255 |
-
num_out_ch (int): Channel number of output image. Default: 3.
|
256 |
-
num_feat (int): Channel number of intermediate features. Default: 64.
|
257 |
-
num_frame (int): Number of input frames. Default: 5.
|
258 |
-
deformable_groups (int): Deformable groups. Defaults: 8.
|
259 |
-
num_extract_block (int): Number of blocks for feature extraction.
|
260 |
-
Default: 5.
|
261 |
-
num_reconstruct_block (int): Number of blocks for reconstruction.
|
262 |
-
Default: 10.
|
263 |
-
center_frame_idx (int): The index of center frame. Frame counting from
|
264 |
-
0. Default: Middle of input frames.
|
265 |
-
hr_in (bool): Whether the input has high resolution. Default: False.
|
266 |
-
with_predeblur (bool): Whether has predeblur module.
|
267 |
-
Default: False.
|
268 |
-
with_tsa (bool): Whether has TSA module. Default: True.
|
269 |
-
"""
|
270 |
-
|
271 |
-
def __init__(self,
|
272 |
-
num_in_ch=3,
|
273 |
-
num_out_ch=3,
|
274 |
-
num_feat=64,
|
275 |
-
num_frame=5,
|
276 |
-
deformable_groups=8,
|
277 |
-
num_extract_block=5,
|
278 |
-
num_reconstruct_block=10,
|
279 |
-
center_frame_idx=None,
|
280 |
-
hr_in=False,
|
281 |
-
with_predeblur=False,
|
282 |
-
with_tsa=True):
|
283 |
-
super(EDVR, self).__init__()
|
284 |
-
if center_frame_idx is None:
|
285 |
-
self.center_frame_idx = num_frame // 2
|
286 |
-
else:
|
287 |
-
self.center_frame_idx = center_frame_idx
|
288 |
-
self.hr_in = hr_in
|
289 |
-
self.with_predeblur = with_predeblur
|
290 |
-
self.with_tsa = with_tsa
|
291 |
-
|
292 |
-
# extract features for each frame
|
293 |
-
if self.with_predeblur:
|
294 |
-
self.predeblur = PredeblurModule(num_feat=num_feat, hr_in=self.hr_in)
|
295 |
-
self.conv_1x1 = nn.Conv2d(num_feat, num_feat, 1, 1)
|
296 |
-
else:
|
297 |
-
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
298 |
-
|
299 |
-
# extract pyramid features
|
300 |
-
self.feature_extraction = make_layer(ResidualBlockNoBN, num_extract_block, num_feat=num_feat)
|
301 |
-
self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
302 |
-
self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
303 |
-
self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
|
304 |
-
self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
305 |
-
|
306 |
-
# pcd and tsa module
|
307 |
-
self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=deformable_groups)
|
308 |
-
if self.with_tsa:
|
309 |
-
self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_frame, center_frame_idx=self.center_frame_idx)
|
310 |
-
else:
|
311 |
-
self.fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
|
312 |
-
|
313 |
-
# reconstruction
|
314 |
-
self.reconstruction = make_layer(ResidualBlockNoBN, num_reconstruct_block, num_feat=num_feat)
|
315 |
-
# upsample
|
316 |
-
self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
|
317 |
-
self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1)
|
318 |
-
self.pixel_shuffle = nn.PixelShuffle(2)
|
319 |
-
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
|
320 |
-
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
|
321 |
-
|
322 |
-
# activation function
|
323 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
324 |
-
|
325 |
-
def forward(self, x):
|
326 |
-
b, t, c, h, w = x.size()
|
327 |
-
if self.hr_in:
|
328 |
-
assert h % 16 == 0 and w % 16 == 0, ('The height and width must be multiple of 16.')
|
329 |
-
else:
|
330 |
-
assert h % 4 == 0 and w % 4 == 0, ('The height and width must be multiple of 4.')
|
331 |
-
|
332 |
-
x_center = x[:, self.center_frame_idx, :, :, :].contiguous()
|
333 |
-
|
334 |
-
# extract features for each frame
|
335 |
-
# L1
|
336 |
-
if self.with_predeblur:
|
337 |
-
feat_l1 = self.conv_1x1(self.predeblur(x.view(-1, c, h, w)))
|
338 |
-
if self.hr_in:
|
339 |
-
h, w = h // 4, w // 4
|
340 |
-
else:
|
341 |
-
feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w)))
|
342 |
-
|
343 |
-
feat_l1 = self.feature_extraction(feat_l1)
|
344 |
-
# L2
|
345 |
-
feat_l2 = self.lrelu(self.conv_l2_1(feat_l1))
|
346 |
-
feat_l2 = self.lrelu(self.conv_l2_2(feat_l2))
|
347 |
-
# L3
|
348 |
-
feat_l3 = self.lrelu(self.conv_l3_1(feat_l2))
|
349 |
-
feat_l3 = self.lrelu(self.conv_l3_2(feat_l3))
|
350 |
-
|
351 |
-
feat_l1 = feat_l1.view(b, t, -1, h, w)
|
352 |
-
feat_l2 = feat_l2.view(b, t, -1, h // 2, w // 2)
|
353 |
-
feat_l3 = feat_l3.view(b, t, -1, h // 4, w // 4)
|
354 |
-
|
355 |
-
# PCD alignment
|
356 |
-
ref_feat_l = [ # reference feature list
|
357 |
-
feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(),
|
358 |
-
feat_l3[:, self.center_frame_idx, :, :, :].clone()
|
359 |
-
]
|
360 |
-
aligned_feat = []
|
361 |
-
for i in range(t):
|
362 |
-
nbr_feat_l = [ # neighboring feature list
|
363 |
-
feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone()
|
364 |
-
]
|
365 |
-
aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l))
|
366 |
-
aligned_feat = torch.stack(aligned_feat, dim=1) # (b, t, c, h, w)
|
367 |
-
|
368 |
-
if not self.with_tsa:
|
369 |
-
aligned_feat = aligned_feat.view(b, -1, h, w)
|
370 |
-
feat = self.fusion(aligned_feat)
|
371 |
-
|
372 |
-
out = self.reconstruction(feat)
|
373 |
-
out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
|
374 |
-
out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
|
375 |
-
out = self.lrelu(self.conv_hr(out))
|
376 |
-
out = self.conv_last(out)
|
377 |
-
if self.hr_in:
|
378 |
-
base = x_center
|
379 |
-
else:
|
380 |
-
base = F.interpolate(x_center, scale_factor=4, mode='bilinear', align_corners=False)
|
381 |
-
out += base
|
382 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/hifacegan_arch.py
DELETED
@@ -1,260 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
7 |
-
from .hifacegan_util import BaseNetwork, LIPEncoder, SPADEResnetBlock, get_nonspade_norm_layer
|
8 |
-
|
9 |
-
|
10 |
-
class SPADEGenerator(BaseNetwork):
|
11 |
-
"""Generator with SPADEResBlock"""
|
12 |
-
|
13 |
-
def __init__(self,
|
14 |
-
num_in_ch=3,
|
15 |
-
num_feat=64,
|
16 |
-
use_vae=False,
|
17 |
-
z_dim=256,
|
18 |
-
crop_size=512,
|
19 |
-
norm_g='spectralspadesyncbatch3x3',
|
20 |
-
is_train=True,
|
21 |
-
init_train_phase=3): # progressive training disabled
|
22 |
-
super().__init__()
|
23 |
-
self.nf = num_feat
|
24 |
-
self.input_nc = num_in_ch
|
25 |
-
self.is_train = is_train
|
26 |
-
self.train_phase = init_train_phase
|
27 |
-
|
28 |
-
self.scale_ratio = 5 # hardcoded now
|
29 |
-
self.sw = crop_size // (2**self.scale_ratio)
|
30 |
-
self.sh = self.sw # 20210519: By default use square image, aspect_ratio = 1.0
|
31 |
-
|
32 |
-
if use_vae:
|
33 |
-
# In case of VAE, we will sample from random z vector
|
34 |
-
self.fc = nn.Linear(z_dim, 16 * self.nf * self.sw * self.sh)
|
35 |
-
else:
|
36 |
-
# Otherwise, we make the network deterministic by starting with
|
37 |
-
# downsampled segmentation map instead of random z
|
38 |
-
self.fc = nn.Conv2d(num_in_ch, 16 * self.nf, 3, padding=1)
|
39 |
-
|
40 |
-
self.head_0 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)
|
41 |
-
|
42 |
-
self.g_middle_0 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)
|
43 |
-
self.g_middle_1 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)
|
44 |
-
|
45 |
-
self.ups = nn.ModuleList([
|
46 |
-
SPADEResnetBlock(16 * self.nf, 8 * self.nf, norm_g),
|
47 |
-
SPADEResnetBlock(8 * self.nf, 4 * self.nf, norm_g),
|
48 |
-
SPADEResnetBlock(4 * self.nf, 2 * self.nf, norm_g),
|
49 |
-
SPADEResnetBlock(2 * self.nf, 1 * self.nf, norm_g)
|
50 |
-
])
|
51 |
-
|
52 |
-
self.to_rgbs = nn.ModuleList([
|
53 |
-
nn.Conv2d(8 * self.nf, 3, 3, padding=1),
|
54 |
-
nn.Conv2d(4 * self.nf, 3, 3, padding=1),
|
55 |
-
nn.Conv2d(2 * self.nf, 3, 3, padding=1),
|
56 |
-
nn.Conv2d(1 * self.nf, 3, 3, padding=1)
|
57 |
-
])
|
58 |
-
|
59 |
-
self.up = nn.Upsample(scale_factor=2)
|
60 |
-
|
61 |
-
def encode(self, input_tensor):
|
62 |
-
"""
|
63 |
-
Encode input_tensor into feature maps, can be overridden in derived classes
|
64 |
-
Default: nearest downsampling of 2**5 = 32 times
|
65 |
-
"""
|
66 |
-
h, w = input_tensor.size()[-2:]
|
67 |
-
sh, sw = h // 2**self.scale_ratio, w // 2**self.scale_ratio
|
68 |
-
x = F.interpolate(input_tensor, size=(sh, sw))
|
69 |
-
return self.fc(x)
|
70 |
-
|
71 |
-
def forward(self, x):
|
72 |
-
# In oroginal SPADE, seg means a segmentation map, but here we use x instead.
|
73 |
-
seg = x
|
74 |
-
|
75 |
-
x = self.encode(x)
|
76 |
-
x = self.head_0(x, seg)
|
77 |
-
|
78 |
-
x = self.up(x)
|
79 |
-
x = self.g_middle_0(x, seg)
|
80 |
-
x = self.g_middle_1(x, seg)
|
81 |
-
|
82 |
-
if self.is_train:
|
83 |
-
phase = self.train_phase + 1
|
84 |
-
else:
|
85 |
-
phase = len(self.to_rgbs)
|
86 |
-
|
87 |
-
for i in range(phase):
|
88 |
-
x = self.up(x)
|
89 |
-
x = self.ups[i](x, seg)
|
90 |
-
|
91 |
-
x = self.to_rgbs[phase - 1](F.leaky_relu(x, 2e-1))
|
92 |
-
x = torch.tanh(x)
|
93 |
-
|
94 |
-
return x
|
95 |
-
|
96 |
-
def mixed_guidance_forward(self, input_x, seg=None, n=0, mode='progressive'):
|
97 |
-
"""
|
98 |
-
A helper class for subspace visualization. Input and seg are different images.
|
99 |
-
For the first n levels (including encoder) we use input, for the rest we use seg.
|
100 |
-
|
101 |
-
If mode = 'progressive', the output's like: AAABBB
|
102 |
-
If mode = 'one_plug', the output's like: AAABAA
|
103 |
-
If mode = 'one_ablate', the output's like: BBBABB
|
104 |
-
"""
|
105 |
-
|
106 |
-
if seg is None:
|
107 |
-
return self.forward(input_x)
|
108 |
-
|
109 |
-
if self.is_train:
|
110 |
-
phase = self.train_phase + 1
|
111 |
-
else:
|
112 |
-
phase = len(self.to_rgbs)
|
113 |
-
|
114 |
-
if mode == 'progressive':
|
115 |
-
n = max(min(n, 4 + phase), 0)
|
116 |
-
guide_list = [input_x] * n + [seg] * (4 + phase - n)
|
117 |
-
elif mode == 'one_plug':
|
118 |
-
n = max(min(n, 4 + phase - 1), 0)
|
119 |
-
guide_list = [seg] * (4 + phase)
|
120 |
-
guide_list[n] = input_x
|
121 |
-
elif mode == 'one_ablate':
|
122 |
-
if n > 3 + phase:
|
123 |
-
return self.forward(input_x)
|
124 |
-
guide_list = [input_x] * (4 + phase)
|
125 |
-
guide_list[n] = seg
|
126 |
-
|
127 |
-
x = self.encode(guide_list[0])
|
128 |
-
x = self.head_0(x, guide_list[1])
|
129 |
-
|
130 |
-
x = self.up(x)
|
131 |
-
x = self.g_middle_0(x, guide_list[2])
|
132 |
-
x = self.g_middle_1(x, guide_list[3])
|
133 |
-
|
134 |
-
for i in range(phase):
|
135 |
-
x = self.up(x)
|
136 |
-
x = self.ups[i](x, guide_list[4 + i])
|
137 |
-
|
138 |
-
x = self.to_rgbs[phase - 1](F.leaky_relu(x, 2e-1))
|
139 |
-
x = torch.tanh(x)
|
140 |
-
|
141 |
-
return x
|
142 |
-
|
143 |
-
|
144 |
-
@ARCH_REGISTRY.register()
|
145 |
-
class HiFaceGAN(SPADEGenerator):
|
146 |
-
"""
|
147 |
-
HiFaceGAN: SPADEGenerator with a learnable feature encoder
|
148 |
-
Current encoder design: LIPEncoder
|
149 |
-
"""
|
150 |
-
|
151 |
-
def __init__(self,
|
152 |
-
num_in_ch=3,
|
153 |
-
num_feat=64,
|
154 |
-
use_vae=False,
|
155 |
-
z_dim=256,
|
156 |
-
crop_size=512,
|
157 |
-
norm_g='spectralspadesyncbatch3x3',
|
158 |
-
is_train=True,
|
159 |
-
init_train_phase=3):
|
160 |
-
super().__init__(num_in_ch, num_feat, use_vae, z_dim, crop_size, norm_g, is_train, init_train_phase)
|
161 |
-
self.lip_encoder = LIPEncoder(num_in_ch, num_feat, self.sw, self.sh, self.scale_ratio)
|
162 |
-
|
163 |
-
def encode(self, input_tensor):
|
164 |
-
return self.lip_encoder(input_tensor)
|
165 |
-
|
166 |
-
|
167 |
-
@ARCH_REGISTRY.register()
|
168 |
-
class HiFaceGANDiscriminator(BaseNetwork):
|
169 |
-
"""
|
170 |
-
Inspired by pix2pixHD multiscale discriminator.
|
171 |
-
|
172 |
-
Args:
|
173 |
-
num_in_ch (int): Channel number of inputs. Default: 3.
|
174 |
-
num_out_ch (int): Channel number of outputs. Default: 3.
|
175 |
-
conditional_d (bool): Whether use conditional discriminator.
|
176 |
-
Default: True.
|
177 |
-
num_d (int): Number of Multiscale discriminators. Default: 3.
|
178 |
-
n_layers_d (int): Number of downsample layers in each D. Default: 4.
|
179 |
-
num_feat (int): Channel number of base intermediate features.
|
180 |
-
Default: 64.
|
181 |
-
norm_d (str): String to determine normalization layers in D.
|
182 |
-
Choices: [spectral][instance/batch/syncbatch]
|
183 |
-
Default: 'spectralinstance'.
|
184 |
-
keep_features (bool): Keep intermediate features for matching loss, etc.
|
185 |
-
Default: True.
|
186 |
-
"""
|
187 |
-
|
188 |
-
def __init__(self,
|
189 |
-
num_in_ch=3,
|
190 |
-
num_out_ch=3,
|
191 |
-
conditional_d=True,
|
192 |
-
num_d=2,
|
193 |
-
n_layers_d=4,
|
194 |
-
num_feat=64,
|
195 |
-
norm_d='spectralinstance',
|
196 |
-
keep_features=True):
|
197 |
-
super().__init__()
|
198 |
-
self.num_d = num_d
|
199 |
-
|
200 |
-
input_nc = num_in_ch
|
201 |
-
if conditional_d:
|
202 |
-
input_nc += num_out_ch
|
203 |
-
|
204 |
-
for i in range(num_d):
|
205 |
-
subnet_d = NLayerDiscriminator(input_nc, n_layers_d, num_feat, norm_d, keep_features)
|
206 |
-
self.add_module(f'discriminator_{i}', subnet_d)
|
207 |
-
|
208 |
-
def downsample(self, x):
|
209 |
-
return F.avg_pool2d(x, kernel_size=3, stride=2, padding=[1, 1], count_include_pad=False)
|
210 |
-
|
211 |
-
# Returns list of lists of discriminator outputs.
|
212 |
-
# The final result is of size opt.num_d x opt.n_layers_D
|
213 |
-
def forward(self, x):
|
214 |
-
result = []
|
215 |
-
for _, _net_d in self.named_children():
|
216 |
-
out = _net_d(x)
|
217 |
-
result.append(out)
|
218 |
-
x = self.downsample(x)
|
219 |
-
|
220 |
-
return result
|
221 |
-
|
222 |
-
|
223 |
-
class NLayerDiscriminator(BaseNetwork):
|
224 |
-
"""Defines the PatchGAN discriminator with the specified arguments."""
|
225 |
-
|
226 |
-
def __init__(self, input_nc, n_layers_d, num_feat, norm_d, keep_features):
|
227 |
-
super().__init__()
|
228 |
-
kw = 4
|
229 |
-
padw = int(np.ceil((kw - 1.0) / 2))
|
230 |
-
nf = num_feat
|
231 |
-
self.keep_features = keep_features
|
232 |
-
|
233 |
-
norm_layer = get_nonspade_norm_layer(norm_d)
|
234 |
-
sequence = [[nn.Conv2d(input_nc, nf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, False)]]
|
235 |
-
|
236 |
-
for n in range(1, n_layers_d):
|
237 |
-
nf_prev = nf
|
238 |
-
nf = min(nf * 2, 512)
|
239 |
-
stride = 1 if n == n_layers_d - 1 else 2
|
240 |
-
sequence += [[
|
241 |
-
norm_layer(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=stride, padding=padw)),
|
242 |
-
nn.LeakyReLU(0.2, False)
|
243 |
-
]]
|
244 |
-
|
245 |
-
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
|
246 |
-
|
247 |
-
# We divide the layers into groups to extract intermediate layer outputs
|
248 |
-
for n in range(len(sequence)):
|
249 |
-
self.add_module('model' + str(n), nn.Sequential(*sequence[n]))
|
250 |
-
|
251 |
-
def forward(self, x):
|
252 |
-
results = [x]
|
253 |
-
for submodel in self.children():
|
254 |
-
intermediate_output = submodel(results[-1])
|
255 |
-
results.append(intermediate_output)
|
256 |
-
|
257 |
-
if self.keep_features:
|
258 |
-
return results[1:]
|
259 |
-
else:
|
260 |
-
return results[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/hifacegan_util.py
DELETED
@@ -1,255 +0,0 @@
|
|
1 |
-
import re
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
from torch.nn import init
|
6 |
-
# Warning: spectral norm could be buggy
|
7 |
-
# under eval mode and multi-GPU inference
|
8 |
-
# A workaround is sticking to single-GPU inference and train mode
|
9 |
-
from torch.nn.utils import spectral_norm
|
10 |
-
|
11 |
-
|
12 |
-
class SPADE(nn.Module):
|
13 |
-
|
14 |
-
def __init__(self, config_text, norm_nc, label_nc):
|
15 |
-
super().__init__()
|
16 |
-
|
17 |
-
assert config_text.startswith('spade')
|
18 |
-
parsed = re.search('spade(\\D+)(\\d)x\\d', config_text)
|
19 |
-
param_free_norm_type = str(parsed.group(1))
|
20 |
-
ks = int(parsed.group(2))
|
21 |
-
|
22 |
-
if param_free_norm_type == 'instance':
|
23 |
-
self.param_free_norm = nn.InstanceNorm2d(norm_nc)
|
24 |
-
elif param_free_norm_type == 'syncbatch':
|
25 |
-
print('SyncBatchNorm is currently not supported under single-GPU mode, switch to "instance" instead')
|
26 |
-
self.param_free_norm = nn.InstanceNorm2d(norm_nc)
|
27 |
-
elif param_free_norm_type == 'batch':
|
28 |
-
self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False)
|
29 |
-
else:
|
30 |
-
raise ValueError(f'{param_free_norm_type} is not a recognized param-free norm type in SPADE')
|
31 |
-
|
32 |
-
# The dimension of the intermediate embedding space. Yes, hardcoded.
|
33 |
-
nhidden = 128 if norm_nc > 128 else norm_nc
|
34 |
-
|
35 |
-
pw = ks // 2
|
36 |
-
self.mlp_shared = nn.Sequential(nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw), nn.ReLU())
|
37 |
-
self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw, bias=False)
|
38 |
-
self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw, bias=False)
|
39 |
-
|
40 |
-
def forward(self, x, segmap):
|
41 |
-
|
42 |
-
# Part 1. generate parameter-free normalized activations
|
43 |
-
normalized = self.param_free_norm(x)
|
44 |
-
|
45 |
-
# Part 2. produce scaling and bias conditioned on semantic map
|
46 |
-
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
|
47 |
-
actv = self.mlp_shared(segmap)
|
48 |
-
gamma = self.mlp_gamma(actv)
|
49 |
-
beta = self.mlp_beta(actv)
|
50 |
-
|
51 |
-
# apply scale and bias
|
52 |
-
out = normalized * gamma + beta
|
53 |
-
|
54 |
-
return out
|
55 |
-
|
56 |
-
|
57 |
-
class SPADEResnetBlock(nn.Module):
|
58 |
-
"""
|
59 |
-
ResNet block that uses SPADE. It differs from the ResNet block of pix2pixHD in that
|
60 |
-
it takes in the segmentation map as input, learns the skip connection if necessary,
|
61 |
-
and applies normalization first and then convolution.
|
62 |
-
This architecture seemed like a standard architecture for unconditional or
|
63 |
-
class-conditional GAN architecture using residual block.
|
64 |
-
The code was inspired from https://github.com/LMescheder/GAN_stability.
|
65 |
-
"""
|
66 |
-
|
67 |
-
def __init__(self, fin, fout, norm_g='spectralspadesyncbatch3x3', semantic_nc=3):
|
68 |
-
super().__init__()
|
69 |
-
# Attributes
|
70 |
-
self.learned_shortcut = (fin != fout)
|
71 |
-
fmiddle = min(fin, fout)
|
72 |
-
|
73 |
-
# create conv layers
|
74 |
-
self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1)
|
75 |
-
self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1)
|
76 |
-
if self.learned_shortcut:
|
77 |
-
self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
|
78 |
-
|
79 |
-
# apply spectral norm if specified
|
80 |
-
if 'spectral' in norm_g:
|
81 |
-
self.conv_0 = spectral_norm(self.conv_0)
|
82 |
-
self.conv_1 = spectral_norm(self.conv_1)
|
83 |
-
if self.learned_shortcut:
|
84 |
-
self.conv_s = spectral_norm(self.conv_s)
|
85 |
-
|
86 |
-
# define normalization layers
|
87 |
-
spade_config_str = norm_g.replace('spectral', '')
|
88 |
-
self.norm_0 = SPADE(spade_config_str, fin, semantic_nc)
|
89 |
-
self.norm_1 = SPADE(spade_config_str, fmiddle, semantic_nc)
|
90 |
-
if self.learned_shortcut:
|
91 |
-
self.norm_s = SPADE(spade_config_str, fin, semantic_nc)
|
92 |
-
|
93 |
-
# note the resnet block with SPADE also takes in |seg|,
|
94 |
-
# the semantic segmentation map as input
|
95 |
-
def forward(self, x, seg):
|
96 |
-
x_s = self.shortcut(x, seg)
|
97 |
-
dx = self.conv_0(self.act(self.norm_0(x, seg)))
|
98 |
-
dx = self.conv_1(self.act(self.norm_1(dx, seg)))
|
99 |
-
out = x_s + dx
|
100 |
-
return out
|
101 |
-
|
102 |
-
def shortcut(self, x, seg):
|
103 |
-
if self.learned_shortcut:
|
104 |
-
x_s = self.conv_s(self.norm_s(x, seg))
|
105 |
-
else:
|
106 |
-
x_s = x
|
107 |
-
return x_s
|
108 |
-
|
109 |
-
def act(self, x):
|
110 |
-
return F.leaky_relu(x, 2e-1)
|
111 |
-
|
112 |
-
|
113 |
-
class BaseNetwork(nn.Module):
|
114 |
-
""" A basis for hifacegan archs with custom initialization """
|
115 |
-
|
116 |
-
def init_weights(self, init_type='normal', gain=0.02):
|
117 |
-
|
118 |
-
def init_func(m):
|
119 |
-
classname = m.__class__.__name__
|
120 |
-
if classname.find('BatchNorm2d') != -1:
|
121 |
-
if hasattr(m, 'weight') and m.weight is not None:
|
122 |
-
init.normal_(m.weight.data, 1.0, gain)
|
123 |
-
if hasattr(m, 'bias') and m.bias is not None:
|
124 |
-
init.constant_(m.bias.data, 0.0)
|
125 |
-
elif hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
|
126 |
-
if init_type == 'normal':
|
127 |
-
init.normal_(m.weight.data, 0.0, gain)
|
128 |
-
elif init_type == 'xavier':
|
129 |
-
init.xavier_normal_(m.weight.data, gain=gain)
|
130 |
-
elif init_type == 'xavier_uniform':
|
131 |
-
init.xavier_uniform_(m.weight.data, gain=1.0)
|
132 |
-
elif init_type == 'kaiming':
|
133 |
-
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
|
134 |
-
elif init_type == 'orthogonal':
|
135 |
-
init.orthogonal_(m.weight.data, gain=gain)
|
136 |
-
elif init_type == 'none': # uses pytorch's default init method
|
137 |
-
m.reset_parameters()
|
138 |
-
else:
|
139 |
-
raise NotImplementedError(f'initialization method [{init_type}] is not implemented')
|
140 |
-
if hasattr(m, 'bias') and m.bias is not None:
|
141 |
-
init.constant_(m.bias.data, 0.0)
|
142 |
-
|
143 |
-
self.apply(init_func)
|
144 |
-
|
145 |
-
# propagate to children
|
146 |
-
for m in self.children():
|
147 |
-
if hasattr(m, 'init_weights'):
|
148 |
-
m.init_weights(init_type, gain)
|
149 |
-
|
150 |
-
def forward(self, x):
|
151 |
-
pass
|
152 |
-
|
153 |
-
|
154 |
-
def lip2d(x, logit, kernel=3, stride=2, padding=1):
|
155 |
-
weight = logit.exp()
|
156 |
-
return F.avg_pool2d(x * weight, kernel, stride, padding) / F.avg_pool2d(weight, kernel, stride, padding)
|
157 |
-
|
158 |
-
|
159 |
-
class SoftGate(nn.Module):
|
160 |
-
COEFF = 12.0
|
161 |
-
|
162 |
-
def forward(self, x):
|
163 |
-
return torch.sigmoid(x).mul(self.COEFF)
|
164 |
-
|
165 |
-
|
166 |
-
class SimplifiedLIP(nn.Module):
|
167 |
-
|
168 |
-
def __init__(self, channels):
|
169 |
-
super(SimplifiedLIP, self).__init__()
|
170 |
-
self.logit = nn.Sequential(
|
171 |
-
nn.Conv2d(channels, channels, 3, padding=1, bias=False), nn.InstanceNorm2d(channels, affine=True),
|
172 |
-
SoftGate())
|
173 |
-
|
174 |
-
def init_layer(self):
|
175 |
-
self.logit[0].weight.data.fill_(0.0)
|
176 |
-
|
177 |
-
def forward(self, x):
|
178 |
-
frac = lip2d(x, self.logit(x))
|
179 |
-
return frac
|
180 |
-
|
181 |
-
|
182 |
-
class LIPEncoder(BaseNetwork):
|
183 |
-
"""Local Importance-based Pooling (Ziteng Gao et.al.,ICCV 2019)"""
|
184 |
-
|
185 |
-
def __init__(self, input_nc, ngf, sw, sh, n_2xdown, norm_layer=nn.InstanceNorm2d):
|
186 |
-
super().__init__()
|
187 |
-
self.sw = sw
|
188 |
-
self.sh = sh
|
189 |
-
self.max_ratio = 16
|
190 |
-
# 20200310: Several Convolution (stride 1) + LIP blocks, 4 fold
|
191 |
-
kw = 3
|
192 |
-
pw = (kw - 1) // 2
|
193 |
-
|
194 |
-
model = [
|
195 |
-
nn.Conv2d(input_nc, ngf, kw, stride=1, padding=pw, bias=False),
|
196 |
-
norm_layer(ngf),
|
197 |
-
nn.ReLU(),
|
198 |
-
]
|
199 |
-
cur_ratio = 1
|
200 |
-
for i in range(n_2xdown):
|
201 |
-
next_ratio = min(cur_ratio * 2, self.max_ratio)
|
202 |
-
model += [
|
203 |
-
SimplifiedLIP(ngf * cur_ratio),
|
204 |
-
nn.Conv2d(ngf * cur_ratio, ngf * next_ratio, kw, stride=1, padding=pw),
|
205 |
-
norm_layer(ngf * next_ratio),
|
206 |
-
]
|
207 |
-
cur_ratio = next_ratio
|
208 |
-
if i < n_2xdown - 1:
|
209 |
-
model += [nn.ReLU(inplace=True)]
|
210 |
-
|
211 |
-
self.model = nn.Sequential(*model)
|
212 |
-
|
213 |
-
def forward(self, x):
|
214 |
-
return self.model(x)
|
215 |
-
|
216 |
-
|
217 |
-
def get_nonspade_norm_layer(norm_type='instance'):
|
218 |
-
# helper function to get # output channels of the previous layer
|
219 |
-
def get_out_channel(layer):
|
220 |
-
if hasattr(layer, 'out_channels'):
|
221 |
-
return getattr(layer, 'out_channels')
|
222 |
-
return layer.weight.size(0)
|
223 |
-
|
224 |
-
# this function will be returned
|
225 |
-
def add_norm_layer(layer):
|
226 |
-
nonlocal norm_type
|
227 |
-
if norm_type.startswith('spectral'):
|
228 |
-
layer = spectral_norm(layer)
|
229 |
-
subnorm_type = norm_type[len('spectral'):]
|
230 |
-
|
231 |
-
if subnorm_type == 'none' or len(subnorm_type) == 0:
|
232 |
-
return layer
|
233 |
-
|
234 |
-
# remove bias in the previous layer, which is meaningless
|
235 |
-
# since it has no effect after normalization
|
236 |
-
if getattr(layer, 'bias', None) is not None:
|
237 |
-
delattr(layer, 'bias')
|
238 |
-
layer.register_parameter('bias', None)
|
239 |
-
|
240 |
-
if subnorm_type == 'batch':
|
241 |
-
norm_layer = nn.BatchNorm2d(get_out_channel(layer), affine=True)
|
242 |
-
elif subnorm_type == 'sync_batch':
|
243 |
-
print('SyncBatchNorm is currently not supported under single-GPU mode, switch to "instance" instead')
|
244 |
-
# norm_layer = SynchronizedBatchNorm2d(
|
245 |
-
# get_out_channel(layer), affine=True)
|
246 |
-
norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False)
|
247 |
-
elif subnorm_type == 'instance':
|
248 |
-
norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False)
|
249 |
-
else:
|
250 |
-
raise ValueError(f'normalization layer {subnorm_type} is not recognized')
|
251 |
-
|
252 |
-
return nn.Sequential(layer, norm_layer)
|
253 |
-
|
254 |
-
print('This is a legacy from nvlabs/SPADE, and will be removed in future versions.')
|
255 |
-
return add_norm_layer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/inception.py
DELETED
@@ -1,307 +0,0 @@
|
|
1 |
-
# Modified from https://github.com/mseitzer/pytorch-fid/blob/master/pytorch_fid/inception.py # noqa: E501
|
2 |
-
# For FID metric
|
3 |
-
|
4 |
-
import os
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
import torch.nn.functional as F
|
8 |
-
from torch.utils.model_zoo import load_url
|
9 |
-
from torchvision import models
|
10 |
-
|
11 |
-
# Inception weights ported to Pytorch from
|
12 |
-
# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
|
13 |
-
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' # noqa: E501
|
14 |
-
LOCAL_FID_WEIGHTS = 'experiments/pretrained_models/pt_inception-2015-12-05-6726825d.pth' # noqa: E501
|
15 |
-
|
16 |
-
|
17 |
-
class InceptionV3(nn.Module):
|
18 |
-
"""Pretrained InceptionV3 network returning feature maps"""
|
19 |
-
|
20 |
-
# Index of default block of inception to return,
|
21 |
-
# corresponds to output of final average pooling
|
22 |
-
DEFAULT_BLOCK_INDEX = 3
|
23 |
-
|
24 |
-
# Maps feature dimensionality to their output blocks indices
|
25 |
-
BLOCK_INDEX_BY_DIM = {
|
26 |
-
64: 0, # First max pooling features
|
27 |
-
192: 1, # Second max pooling features
|
28 |
-
768: 2, # Pre-aux classifier features
|
29 |
-
2048: 3 # Final average pooling features
|
30 |
-
}
|
31 |
-
|
32 |
-
def __init__(self,
|
33 |
-
output_blocks=(DEFAULT_BLOCK_INDEX),
|
34 |
-
resize_input=True,
|
35 |
-
normalize_input=True,
|
36 |
-
requires_grad=False,
|
37 |
-
use_fid_inception=True):
|
38 |
-
"""Build pretrained InceptionV3.
|
39 |
-
|
40 |
-
Args:
|
41 |
-
output_blocks (list[int]): Indices of blocks to return features of.
|
42 |
-
Possible values are:
|
43 |
-
- 0: corresponds to output of first max pooling
|
44 |
-
- 1: corresponds to output of second max pooling
|
45 |
-
- 2: corresponds to output which is fed to aux classifier
|
46 |
-
- 3: corresponds to output of final average pooling
|
47 |
-
resize_input (bool): If true, bilinearly resizes input to width and
|
48 |
-
height 299 before feeding input to model. As the network
|
49 |
-
without fully connected layers is fully convolutional, it
|
50 |
-
should be able to handle inputs of arbitrary size, so resizing
|
51 |
-
might not be strictly needed. Default: True.
|
52 |
-
normalize_input (bool): If true, scales the input from range (0, 1)
|
53 |
-
to the range the pretrained Inception network expects,
|
54 |
-
namely (-1, 1). Default: True.
|
55 |
-
requires_grad (bool): If true, parameters of the model require
|
56 |
-
gradients. Possibly useful for finetuning the network.
|
57 |
-
Default: False.
|
58 |
-
use_fid_inception (bool): If true, uses the pretrained Inception
|
59 |
-
model used in Tensorflow's FID implementation.
|
60 |
-
If false, uses the pretrained Inception model available in
|
61 |
-
torchvision. The FID Inception model has different weights
|
62 |
-
and a slightly different structure from torchvision's
|
63 |
-
Inception model. If you want to compute FID scores, you are
|
64 |
-
strongly advised to set this parameter to true to get
|
65 |
-
comparable results. Default: True.
|
66 |
-
"""
|
67 |
-
super(InceptionV3, self).__init__()
|
68 |
-
|
69 |
-
self.resize_input = resize_input
|
70 |
-
self.normalize_input = normalize_input
|
71 |
-
self.output_blocks = sorted(output_blocks)
|
72 |
-
self.last_needed_block = max(output_blocks)
|
73 |
-
|
74 |
-
assert self.last_needed_block <= 3, ('Last possible output block index is 3')
|
75 |
-
|
76 |
-
self.blocks = nn.ModuleList()
|
77 |
-
|
78 |
-
if use_fid_inception:
|
79 |
-
inception = fid_inception_v3()
|
80 |
-
else:
|
81 |
-
try:
|
82 |
-
inception = models.inception_v3(pretrained=True, init_weights=False)
|
83 |
-
except TypeError:
|
84 |
-
# pytorch < 1.5 does not have init_weights for inception_v3
|
85 |
-
inception = models.inception_v3(pretrained=True)
|
86 |
-
|
87 |
-
# Block 0: input to maxpool1
|
88 |
-
block0 = [
|
89 |
-
inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3,
|
90 |
-
nn.MaxPool2d(kernel_size=3, stride=2)
|
91 |
-
]
|
92 |
-
self.blocks.append(nn.Sequential(*block0))
|
93 |
-
|
94 |
-
# Block 1: maxpool1 to maxpool2
|
95 |
-
if self.last_needed_block >= 1:
|
96 |
-
block1 = [inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, stride=2)]
|
97 |
-
self.blocks.append(nn.Sequential(*block1))
|
98 |
-
|
99 |
-
# Block 2: maxpool2 to aux classifier
|
100 |
-
if self.last_needed_block >= 2:
|
101 |
-
block2 = [
|
102 |
-
inception.Mixed_5b,
|
103 |
-
inception.Mixed_5c,
|
104 |
-
inception.Mixed_5d,
|
105 |
-
inception.Mixed_6a,
|
106 |
-
inception.Mixed_6b,
|
107 |
-
inception.Mixed_6c,
|
108 |
-
inception.Mixed_6d,
|
109 |
-
inception.Mixed_6e,
|
110 |
-
]
|
111 |
-
self.blocks.append(nn.Sequential(*block2))
|
112 |
-
|
113 |
-
# Block 3: aux classifier to final avgpool
|
114 |
-
if self.last_needed_block >= 3:
|
115 |
-
block3 = [
|
116 |
-
inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c,
|
117 |
-
nn.AdaptiveAvgPool2d(output_size=(1, 1))
|
118 |
-
]
|
119 |
-
self.blocks.append(nn.Sequential(*block3))
|
120 |
-
|
121 |
-
for param in self.parameters():
|
122 |
-
param.requires_grad = requires_grad
|
123 |
-
|
124 |
-
def forward(self, x):
|
125 |
-
"""Get Inception feature maps.
|
126 |
-
|
127 |
-
Args:
|
128 |
-
x (Tensor): Input tensor of shape (b, 3, h, w).
|
129 |
-
Values are expected to be in range (-1, 1). You can also input
|
130 |
-
(0, 1) with setting normalize_input = True.
|
131 |
-
|
132 |
-
Returns:
|
133 |
-
list[Tensor]: Corresponding to the selected output block, sorted
|
134 |
-
ascending by index.
|
135 |
-
"""
|
136 |
-
output = []
|
137 |
-
|
138 |
-
if self.resize_input:
|
139 |
-
x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False)
|
140 |
-
|
141 |
-
if self.normalize_input:
|
142 |
-
x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1)
|
143 |
-
|
144 |
-
for idx, block in enumerate(self.blocks):
|
145 |
-
x = block(x)
|
146 |
-
if idx in self.output_blocks:
|
147 |
-
output.append(x)
|
148 |
-
|
149 |
-
if idx == self.last_needed_block:
|
150 |
-
break
|
151 |
-
|
152 |
-
return output
|
153 |
-
|
154 |
-
|
155 |
-
def fid_inception_v3():
|
156 |
-
"""Build pretrained Inception model for FID computation.
|
157 |
-
|
158 |
-
The Inception model for FID computation uses a different set of weights
|
159 |
-
and has a slightly different structure than torchvision's Inception.
|
160 |
-
|
161 |
-
This method first constructs torchvision's Inception and then patches the
|
162 |
-
necessary parts that are different in the FID Inception model.
|
163 |
-
"""
|
164 |
-
try:
|
165 |
-
inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False, init_weights=False)
|
166 |
-
except TypeError:
|
167 |
-
# pytorch < 1.5 does not have init_weights for inception_v3
|
168 |
-
inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False)
|
169 |
-
|
170 |
-
inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
|
171 |
-
inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
|
172 |
-
inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
|
173 |
-
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
|
174 |
-
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
|
175 |
-
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
|
176 |
-
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
|
177 |
-
inception.Mixed_7b = FIDInceptionE_1(1280)
|
178 |
-
inception.Mixed_7c = FIDInceptionE_2(2048)
|
179 |
-
|
180 |
-
if os.path.exists(LOCAL_FID_WEIGHTS):
|
181 |
-
state_dict = torch.load(LOCAL_FID_WEIGHTS, map_location=lambda storage, loc: storage)
|
182 |
-
else:
|
183 |
-
state_dict = load_url(FID_WEIGHTS_URL, progress=True)
|
184 |
-
|
185 |
-
inception.load_state_dict(state_dict)
|
186 |
-
return inception
|
187 |
-
|
188 |
-
|
189 |
-
class FIDInceptionA(models.inception.InceptionA):
|
190 |
-
"""InceptionA block patched for FID computation"""
|
191 |
-
|
192 |
-
def __init__(self, in_channels, pool_features):
|
193 |
-
super(FIDInceptionA, self).__init__(in_channels, pool_features)
|
194 |
-
|
195 |
-
def forward(self, x):
|
196 |
-
branch1x1 = self.branch1x1(x)
|
197 |
-
|
198 |
-
branch5x5 = self.branch5x5_1(x)
|
199 |
-
branch5x5 = self.branch5x5_2(branch5x5)
|
200 |
-
|
201 |
-
branch3x3dbl = self.branch3x3dbl_1(x)
|
202 |
-
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
203 |
-
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
|
204 |
-
|
205 |
-
# Patch: Tensorflow's average pool does not use the padded zero's in
|
206 |
-
# its average calculation
|
207 |
-
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
|
208 |
-
branch_pool = self.branch_pool(branch_pool)
|
209 |
-
|
210 |
-
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
|
211 |
-
return torch.cat(outputs, 1)
|
212 |
-
|
213 |
-
|
214 |
-
class FIDInceptionC(models.inception.InceptionC):
|
215 |
-
"""InceptionC block patched for FID computation"""
|
216 |
-
|
217 |
-
def __init__(self, in_channels, channels_7x7):
|
218 |
-
super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
|
219 |
-
|
220 |
-
def forward(self, x):
|
221 |
-
branch1x1 = self.branch1x1(x)
|
222 |
-
|
223 |
-
branch7x7 = self.branch7x7_1(x)
|
224 |
-
branch7x7 = self.branch7x7_2(branch7x7)
|
225 |
-
branch7x7 = self.branch7x7_3(branch7x7)
|
226 |
-
|
227 |
-
branch7x7dbl = self.branch7x7dbl_1(x)
|
228 |
-
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
|
229 |
-
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
|
230 |
-
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
|
231 |
-
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
|
232 |
-
|
233 |
-
# Patch: Tensorflow's average pool does not use the padded zero's in
|
234 |
-
# its average calculation
|
235 |
-
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
|
236 |
-
branch_pool = self.branch_pool(branch_pool)
|
237 |
-
|
238 |
-
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
|
239 |
-
return torch.cat(outputs, 1)
|
240 |
-
|
241 |
-
|
242 |
-
class FIDInceptionE_1(models.inception.InceptionE):
|
243 |
-
"""First InceptionE block patched for FID computation"""
|
244 |
-
|
245 |
-
def __init__(self, in_channels):
|
246 |
-
super(FIDInceptionE_1, self).__init__(in_channels)
|
247 |
-
|
248 |
-
def forward(self, x):
|
249 |
-
branch1x1 = self.branch1x1(x)
|
250 |
-
|
251 |
-
branch3x3 = self.branch3x3_1(x)
|
252 |
-
branch3x3 = [
|
253 |
-
self.branch3x3_2a(branch3x3),
|
254 |
-
self.branch3x3_2b(branch3x3),
|
255 |
-
]
|
256 |
-
branch3x3 = torch.cat(branch3x3, 1)
|
257 |
-
|
258 |
-
branch3x3dbl = self.branch3x3dbl_1(x)
|
259 |
-
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
260 |
-
branch3x3dbl = [
|
261 |
-
self.branch3x3dbl_3a(branch3x3dbl),
|
262 |
-
self.branch3x3dbl_3b(branch3x3dbl),
|
263 |
-
]
|
264 |
-
branch3x3dbl = torch.cat(branch3x3dbl, 1)
|
265 |
-
|
266 |
-
# Patch: Tensorflow's average pool does not use the padded zero's in
|
267 |
-
# its average calculation
|
268 |
-
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
|
269 |
-
branch_pool = self.branch_pool(branch_pool)
|
270 |
-
|
271 |
-
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
|
272 |
-
return torch.cat(outputs, 1)
|
273 |
-
|
274 |
-
|
275 |
-
class FIDInceptionE_2(models.inception.InceptionE):
|
276 |
-
"""Second InceptionE block patched for FID computation"""
|
277 |
-
|
278 |
-
def __init__(self, in_channels):
|
279 |
-
super(FIDInceptionE_2, self).__init__(in_channels)
|
280 |
-
|
281 |
-
def forward(self, x):
|
282 |
-
branch1x1 = self.branch1x1(x)
|
283 |
-
|
284 |
-
branch3x3 = self.branch3x3_1(x)
|
285 |
-
branch3x3 = [
|
286 |
-
self.branch3x3_2a(branch3x3),
|
287 |
-
self.branch3x3_2b(branch3x3),
|
288 |
-
]
|
289 |
-
branch3x3 = torch.cat(branch3x3, 1)
|
290 |
-
|
291 |
-
branch3x3dbl = self.branch3x3dbl_1(x)
|
292 |
-
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
293 |
-
branch3x3dbl = [
|
294 |
-
self.branch3x3dbl_3a(branch3x3dbl),
|
295 |
-
self.branch3x3dbl_3b(branch3x3dbl),
|
296 |
-
]
|
297 |
-
branch3x3dbl = torch.cat(branch3x3dbl, 1)
|
298 |
-
|
299 |
-
# Patch: The FID Inception model uses max pooling instead of average
|
300 |
-
# pooling. This is likely an error in this specific Inception
|
301 |
-
# implementation, as other Inception models use average pooling here
|
302 |
-
# (which matches the description in the paper).
|
303 |
-
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
|
304 |
-
branch_pool = self.branch_pool(branch_pool)
|
305 |
-
|
306 |
-
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
|
307 |
-
return torch.cat(outputs, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/rcan_arch.py
DELETED
@@ -1,135 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn as nn
|
3 |
-
|
4 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
5 |
-
from .arch_util import Upsample, make_layer
|
6 |
-
|
7 |
-
|
8 |
-
class ChannelAttention(nn.Module):
|
9 |
-
"""Channel attention used in RCAN.
|
10 |
-
|
11 |
-
Args:
|
12 |
-
num_feat (int): Channel number of intermediate features.
|
13 |
-
squeeze_factor (int): Channel squeeze factor. Default: 16.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self, num_feat, squeeze_factor=16):
|
17 |
-
super(ChannelAttention, self).__init__()
|
18 |
-
self.attention = nn.Sequential(
|
19 |
-
nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
|
20 |
-
nn.ReLU(inplace=True), nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), nn.Sigmoid())
|
21 |
-
|
22 |
-
def forward(self, x):
|
23 |
-
y = self.attention(x)
|
24 |
-
return x * y
|
25 |
-
|
26 |
-
|
27 |
-
class RCAB(nn.Module):
|
28 |
-
"""Residual Channel Attention Block (RCAB) used in RCAN.
|
29 |
-
|
30 |
-
Args:
|
31 |
-
num_feat (int): Channel number of intermediate features.
|
32 |
-
squeeze_factor (int): Channel squeeze factor. Default: 16.
|
33 |
-
res_scale (float): Scale the residual. Default: 1.
|
34 |
-
"""
|
35 |
-
|
36 |
-
def __init__(self, num_feat, squeeze_factor=16, res_scale=1):
|
37 |
-
super(RCAB, self).__init__()
|
38 |
-
self.res_scale = res_scale
|
39 |
-
|
40 |
-
self.rcab = nn.Sequential(
|
41 |
-
nn.Conv2d(num_feat, num_feat, 3, 1, 1), nn.ReLU(True), nn.Conv2d(num_feat, num_feat, 3, 1, 1),
|
42 |
-
ChannelAttention(num_feat, squeeze_factor))
|
43 |
-
|
44 |
-
def forward(self, x):
|
45 |
-
res = self.rcab(x) * self.res_scale
|
46 |
-
return res + x
|
47 |
-
|
48 |
-
|
49 |
-
class ResidualGroup(nn.Module):
|
50 |
-
"""Residual Group of RCAB.
|
51 |
-
|
52 |
-
Args:
|
53 |
-
num_feat (int): Channel number of intermediate features.
|
54 |
-
num_block (int): Block number in the body network.
|
55 |
-
squeeze_factor (int): Channel squeeze factor. Default: 16.
|
56 |
-
res_scale (float): Scale the residual. Default: 1.
|
57 |
-
"""
|
58 |
-
|
59 |
-
def __init__(self, num_feat, num_block, squeeze_factor=16, res_scale=1):
|
60 |
-
super(ResidualGroup, self).__init__()
|
61 |
-
|
62 |
-
self.residual_group = make_layer(
|
63 |
-
RCAB, num_block, num_feat=num_feat, squeeze_factor=squeeze_factor, res_scale=res_scale)
|
64 |
-
self.conv = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
65 |
-
|
66 |
-
def forward(self, x):
|
67 |
-
res = self.conv(self.residual_group(x))
|
68 |
-
return res + x
|
69 |
-
|
70 |
-
|
71 |
-
@ARCH_REGISTRY.register()
|
72 |
-
class RCAN(nn.Module):
|
73 |
-
"""Residual Channel Attention Networks.
|
74 |
-
|
75 |
-
``Paper: Image Super-Resolution Using Very Deep Residual Channel Attention Networks``
|
76 |
-
|
77 |
-
Reference: https://github.com/yulunzhang/RCAN
|
78 |
-
|
79 |
-
Args:
|
80 |
-
num_in_ch (int): Channel number of inputs.
|
81 |
-
num_out_ch (int): Channel number of outputs.
|
82 |
-
num_feat (int): Channel number of intermediate features.
|
83 |
-
Default: 64.
|
84 |
-
num_group (int): Number of ResidualGroup. Default: 10.
|
85 |
-
num_block (int): Number of RCAB in ResidualGroup. Default: 16.
|
86 |
-
squeeze_factor (int): Channel squeeze factor. Default: 16.
|
87 |
-
upscale (int): Upsampling factor. Support 2^n and 3.
|
88 |
-
Default: 4.
|
89 |
-
res_scale (float): Used to scale the residual in residual block.
|
90 |
-
Default: 1.
|
91 |
-
img_range (float): Image range. Default: 255.
|
92 |
-
rgb_mean (tuple[float]): Image mean in RGB orders.
|
93 |
-
Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
|
94 |
-
"""
|
95 |
-
|
96 |
-
def __init__(self,
|
97 |
-
num_in_ch,
|
98 |
-
num_out_ch,
|
99 |
-
num_feat=64,
|
100 |
-
num_group=10,
|
101 |
-
num_block=16,
|
102 |
-
squeeze_factor=16,
|
103 |
-
upscale=4,
|
104 |
-
res_scale=1,
|
105 |
-
img_range=255.,
|
106 |
-
rgb_mean=(0.4488, 0.4371, 0.4040)):
|
107 |
-
super(RCAN, self).__init__()
|
108 |
-
|
109 |
-
self.img_range = img_range
|
110 |
-
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
111 |
-
|
112 |
-
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
113 |
-
self.body = make_layer(
|
114 |
-
ResidualGroup,
|
115 |
-
num_group,
|
116 |
-
num_feat=num_feat,
|
117 |
-
num_block=num_block,
|
118 |
-
squeeze_factor=squeeze_factor,
|
119 |
-
res_scale=res_scale)
|
120 |
-
self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
121 |
-
self.upsample = Upsample(upscale, num_feat)
|
122 |
-
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
123 |
-
|
124 |
-
def forward(self, x):
|
125 |
-
self.mean = self.mean.type_as(x)
|
126 |
-
|
127 |
-
x = (x - self.mean) * self.img_range
|
128 |
-
x = self.conv_first(x)
|
129 |
-
res = self.conv_after_body(self.body(x))
|
130 |
-
res += x
|
131 |
-
|
132 |
-
x = self.conv_last(self.upsample(res))
|
133 |
-
x = x / self.img_range + self.mean
|
134 |
-
|
135 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/ridnet_arch.py
DELETED
@@ -1,180 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
5 |
-
from .arch_util import ResidualBlockNoBN, make_layer
|
6 |
-
|
7 |
-
|
8 |
-
class MeanShift(nn.Conv2d):
|
9 |
-
""" Data normalization with mean and std.
|
10 |
-
|
11 |
-
Args:
|
12 |
-
rgb_range (int): Maximum value of RGB.
|
13 |
-
rgb_mean (list[float]): Mean for RGB channels.
|
14 |
-
rgb_std (list[float]): Std for RGB channels.
|
15 |
-
sign (int): For subtraction, sign is -1, for addition, sign is 1.
|
16 |
-
Default: -1.
|
17 |
-
requires_grad (bool): Whether to update the self.weight and self.bias.
|
18 |
-
Default: True.
|
19 |
-
"""
|
20 |
-
|
21 |
-
def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1, requires_grad=True):
|
22 |
-
super(MeanShift, self).__init__(3, 3, kernel_size=1)
|
23 |
-
std = torch.Tensor(rgb_std)
|
24 |
-
self.weight.data = torch.eye(3).view(3, 3, 1, 1)
|
25 |
-
self.weight.data.div_(std.view(3, 1, 1, 1))
|
26 |
-
self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
|
27 |
-
self.bias.data.div_(std)
|
28 |
-
self.requires_grad = requires_grad
|
29 |
-
|
30 |
-
|
31 |
-
class EResidualBlockNoBN(nn.Module):
|
32 |
-
"""Enhanced Residual block without BN.
|
33 |
-
|
34 |
-
There are three convolution layers in residual branch.
|
35 |
-
"""
|
36 |
-
|
37 |
-
def __init__(self, in_channels, out_channels):
|
38 |
-
super(EResidualBlockNoBN, self).__init__()
|
39 |
-
|
40 |
-
self.body = nn.Sequential(
|
41 |
-
nn.Conv2d(in_channels, out_channels, 3, 1, 1),
|
42 |
-
nn.ReLU(inplace=True),
|
43 |
-
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
|
44 |
-
nn.ReLU(inplace=True),
|
45 |
-
nn.Conv2d(out_channels, out_channels, 1, 1, 0),
|
46 |
-
)
|
47 |
-
self.relu = nn.ReLU(inplace=True)
|
48 |
-
|
49 |
-
def forward(self, x):
|
50 |
-
out = self.body(x)
|
51 |
-
out = self.relu(out + x)
|
52 |
-
return out
|
53 |
-
|
54 |
-
|
55 |
-
class MergeRun(nn.Module):
|
56 |
-
""" Merge-and-run unit.
|
57 |
-
|
58 |
-
This unit contains two branches with different dilated convolutions,
|
59 |
-
followed by a convolution to process the concatenated features.
|
60 |
-
|
61 |
-
Paper: Real Image Denoising with Feature Attention
|
62 |
-
Ref git repo: https://github.com/saeed-anwar/RIDNet
|
63 |
-
"""
|
64 |
-
|
65 |
-
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
|
66 |
-
super(MergeRun, self).__init__()
|
67 |
-
|
68 |
-
self.dilation1 = nn.Sequential(
|
69 |
-
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True),
|
70 |
-
nn.Conv2d(out_channels, out_channels, kernel_size, stride, 2, 2), nn.ReLU(inplace=True))
|
71 |
-
self.dilation2 = nn.Sequential(
|
72 |
-
nn.Conv2d(in_channels, out_channels, kernel_size, stride, 3, 3), nn.ReLU(inplace=True),
|
73 |
-
nn.Conv2d(out_channels, out_channels, kernel_size, stride, 4, 4), nn.ReLU(inplace=True))
|
74 |
-
|
75 |
-
self.aggregation = nn.Sequential(
|
76 |
-
nn.Conv2d(out_channels * 2, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True))
|
77 |
-
|
78 |
-
def forward(self, x):
|
79 |
-
dilation1 = self.dilation1(x)
|
80 |
-
dilation2 = self.dilation2(x)
|
81 |
-
out = torch.cat([dilation1, dilation2], dim=1)
|
82 |
-
out = self.aggregation(out)
|
83 |
-
out = out + x
|
84 |
-
return out
|
85 |
-
|
86 |
-
|
87 |
-
class ChannelAttention(nn.Module):
|
88 |
-
"""Channel attention.
|
89 |
-
|
90 |
-
Args:
|
91 |
-
num_feat (int): Channel number of intermediate features.
|
92 |
-
squeeze_factor (int): Channel squeeze factor. Default:
|
93 |
-
"""
|
94 |
-
|
95 |
-
def __init__(self, mid_channels, squeeze_factor=16):
|
96 |
-
super(ChannelAttention, self).__init__()
|
97 |
-
self.attention = nn.Sequential(
|
98 |
-
nn.AdaptiveAvgPool2d(1), nn.Conv2d(mid_channels, mid_channels // squeeze_factor, 1, padding=0),
|
99 |
-
nn.ReLU(inplace=True), nn.Conv2d(mid_channels // squeeze_factor, mid_channels, 1, padding=0), nn.Sigmoid())
|
100 |
-
|
101 |
-
def forward(self, x):
|
102 |
-
y = self.attention(x)
|
103 |
-
return x * y
|
104 |
-
|
105 |
-
|
106 |
-
class EAM(nn.Module):
|
107 |
-
"""Enhancement attention modules (EAM) in RIDNet.
|
108 |
-
|
109 |
-
This module contains a merge-and-run unit, a residual block,
|
110 |
-
an enhanced residual block and a feature attention unit.
|
111 |
-
|
112 |
-
Attributes:
|
113 |
-
merge: The merge-and-run unit.
|
114 |
-
block1: The residual block.
|
115 |
-
block2: The enhanced residual block.
|
116 |
-
ca: The feature/channel attention unit.
|
117 |
-
"""
|
118 |
-
|
119 |
-
def __init__(self, in_channels, mid_channels, out_channels):
|
120 |
-
super(EAM, self).__init__()
|
121 |
-
|
122 |
-
self.merge = MergeRun(in_channels, mid_channels)
|
123 |
-
self.block1 = ResidualBlockNoBN(mid_channels)
|
124 |
-
self.block2 = EResidualBlockNoBN(mid_channels, out_channels)
|
125 |
-
self.ca = ChannelAttention(out_channels)
|
126 |
-
# The residual block in the paper contains a relu after addition.
|
127 |
-
self.relu = nn.ReLU(inplace=True)
|
128 |
-
|
129 |
-
def forward(self, x):
|
130 |
-
out = self.merge(x)
|
131 |
-
out = self.relu(self.block1(out))
|
132 |
-
out = self.block2(out)
|
133 |
-
out = self.ca(out)
|
134 |
-
return out
|
135 |
-
|
136 |
-
|
137 |
-
@ARCH_REGISTRY.register()
|
138 |
-
class RIDNet(nn.Module):
|
139 |
-
"""RIDNet: Real Image Denoising with Feature Attention.
|
140 |
-
|
141 |
-
Ref git repo: https://github.com/saeed-anwar/RIDNet
|
142 |
-
|
143 |
-
Args:
|
144 |
-
in_channels (int): Channel number of inputs.
|
145 |
-
mid_channels (int): Channel number of EAM modules.
|
146 |
-
Default: 64.
|
147 |
-
out_channels (int): Channel number of outputs.
|
148 |
-
num_block (int): Number of EAM. Default: 4.
|
149 |
-
img_range (float): Image range. Default: 255.
|
150 |
-
rgb_mean (tuple[float]): Image mean in RGB orders.
|
151 |
-
Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
|
152 |
-
"""
|
153 |
-
|
154 |
-
def __init__(self,
|
155 |
-
in_channels,
|
156 |
-
mid_channels,
|
157 |
-
out_channels,
|
158 |
-
num_block=4,
|
159 |
-
img_range=255.,
|
160 |
-
rgb_mean=(0.4488, 0.4371, 0.4040),
|
161 |
-
rgb_std=(1.0, 1.0, 1.0)):
|
162 |
-
super(RIDNet, self).__init__()
|
163 |
-
|
164 |
-
self.sub_mean = MeanShift(img_range, rgb_mean, rgb_std)
|
165 |
-
self.add_mean = MeanShift(img_range, rgb_mean, rgb_std, 1)
|
166 |
-
|
167 |
-
self.head = nn.Conv2d(in_channels, mid_channels, 3, 1, 1)
|
168 |
-
self.body = make_layer(
|
169 |
-
EAM, num_block, in_channels=mid_channels, mid_channels=mid_channels, out_channels=mid_channels)
|
170 |
-
self.tail = nn.Conv2d(mid_channels, out_channels, 3, 1, 1)
|
171 |
-
|
172 |
-
self.relu = nn.ReLU(inplace=True)
|
173 |
-
|
174 |
-
def forward(self, x):
|
175 |
-
res = self.sub_mean(x)
|
176 |
-
res = self.tail(self.body(self.relu(self.head(res))))
|
177 |
-
res = self.add_mean(res)
|
178 |
-
|
179 |
-
out = x + res
|
180 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/rrdbnet_arch.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn as nn
|
3 |
-
from torch.nn import functional as F
|
4 |
-
|
5 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
6 |
-
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
|
7 |
-
|
8 |
-
|
9 |
-
class ResidualDenseBlock(nn.Module):
|
10 |
-
"""Residual Dense Block.
|
11 |
-
|
12 |
-
Used in RRDB block in ESRGAN.
|
13 |
-
|
14 |
-
Args:
|
15 |
-
num_feat (int): Channel number of intermediate features.
|
16 |
-
num_grow_ch (int): Channels for each growth.
|
17 |
-
"""
|
18 |
-
|
19 |
-
def __init__(self, num_feat=64, num_grow_ch=32):
|
20 |
-
super(ResidualDenseBlock, self).__init__()
|
21 |
-
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
22 |
-
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
23 |
-
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
24 |
-
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
25 |
-
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
26 |
-
|
27 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
28 |
-
|
29 |
-
# initialization
|
30 |
-
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
31 |
-
|
32 |
-
def forward(self, x):
|
33 |
-
x1 = self.lrelu(self.conv1(x))
|
34 |
-
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
35 |
-
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
36 |
-
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
37 |
-
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
38 |
-
# Empirically, we use 0.2 to scale the residual for better performance
|
39 |
-
return x5 * 0.2 + x
|
40 |
-
|
41 |
-
|
42 |
-
class RRDB(nn.Module):
|
43 |
-
"""Residual in Residual Dense Block.
|
44 |
-
|
45 |
-
Used in RRDB-Net in ESRGAN.
|
46 |
-
|
47 |
-
Args:
|
48 |
-
num_feat (int): Channel number of intermediate features.
|
49 |
-
num_grow_ch (int): Channels for each growth.
|
50 |
-
"""
|
51 |
-
|
52 |
-
def __init__(self, num_feat, num_grow_ch=32):
|
53 |
-
super(RRDB, self).__init__()
|
54 |
-
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
55 |
-
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
56 |
-
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
57 |
-
|
58 |
-
def forward(self, x):
|
59 |
-
out = self.rdb1(x)
|
60 |
-
out = self.rdb2(out)
|
61 |
-
out = self.rdb3(out)
|
62 |
-
# Empirically, we use 0.2 to scale the residual for better performance
|
63 |
-
return out * 0.2 + x
|
64 |
-
|
65 |
-
|
66 |
-
@ARCH_REGISTRY.register()
|
67 |
-
class RRDBNet(nn.Module):
|
68 |
-
"""Networks consisting of Residual in Residual Dense Block, which is used
|
69 |
-
in ESRGAN.
|
70 |
-
|
71 |
-
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
|
72 |
-
|
73 |
-
We extend ESRGAN for scale x2 and scale x1.
|
74 |
-
Note: This is one option for scale 1, scale 2 in RRDBNet.
|
75 |
-
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
|
76 |
-
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
|
77 |
-
|
78 |
-
Args:
|
79 |
-
num_in_ch (int): Channel number of inputs.
|
80 |
-
num_out_ch (int): Channel number of outputs.
|
81 |
-
num_feat (int): Channel number of intermediate features.
|
82 |
-
Default: 64
|
83 |
-
num_block (int): Block number in the trunk network. Defaults: 23
|
84 |
-
num_grow_ch (int): Channels for each growth. Default: 32.
|
85 |
-
"""
|
86 |
-
|
87 |
-
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
|
88 |
-
super(RRDBNet, self).__init__()
|
89 |
-
self.scale = scale
|
90 |
-
if scale == 2:
|
91 |
-
num_in_ch = num_in_ch * 4
|
92 |
-
elif scale == 1:
|
93 |
-
num_in_ch = num_in_ch * 16
|
94 |
-
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
95 |
-
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
|
96 |
-
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
97 |
-
# upsample
|
98 |
-
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
99 |
-
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
100 |
-
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
101 |
-
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
102 |
-
|
103 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
104 |
-
|
105 |
-
def forward(self, x):
|
106 |
-
if self.scale == 2:
|
107 |
-
feat = pixel_unshuffle(x, scale=2)
|
108 |
-
elif self.scale == 1:
|
109 |
-
feat = pixel_unshuffle(x, scale=4)
|
110 |
-
else:
|
111 |
-
feat = x
|
112 |
-
feat = self.conv_first(feat)
|
113 |
-
body_feat = self.conv_body(self.body(feat))
|
114 |
-
feat = feat + body_feat
|
115 |
-
# upsample
|
116 |
-
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
117 |
-
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
118 |
-
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
119 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/spynet_arch.py
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
from torch import nn as nn
|
4 |
-
from torch.nn import functional as F
|
5 |
-
|
6 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
7 |
-
from .arch_util import flow_warp
|
8 |
-
|
9 |
-
|
10 |
-
class BasicModule(nn.Module):
|
11 |
-
"""Basic Module for SpyNet.
|
12 |
-
"""
|
13 |
-
|
14 |
-
def __init__(self):
|
15 |
-
super(BasicModule, self).__init__()
|
16 |
-
|
17 |
-
self.basic_module = nn.Sequential(
|
18 |
-
nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
|
19 |
-
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
|
20 |
-
nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
|
21 |
-
nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
|
22 |
-
nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3))
|
23 |
-
|
24 |
-
def forward(self, tensor_input):
|
25 |
-
return self.basic_module(tensor_input)
|
26 |
-
|
27 |
-
|
28 |
-
@ARCH_REGISTRY.register()
|
29 |
-
class SpyNet(nn.Module):
|
30 |
-
"""SpyNet architecture.
|
31 |
-
|
32 |
-
Args:
|
33 |
-
load_path (str): path for pretrained SpyNet. Default: None.
|
34 |
-
"""
|
35 |
-
|
36 |
-
def __init__(self, load_path=None):
|
37 |
-
super(SpyNet, self).__init__()
|
38 |
-
self.basic_module = nn.ModuleList([BasicModule() for _ in range(6)])
|
39 |
-
if load_path:
|
40 |
-
self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params'])
|
41 |
-
|
42 |
-
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
|
43 |
-
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
|
44 |
-
|
45 |
-
def preprocess(self, tensor_input):
|
46 |
-
tensor_output = (tensor_input - self.mean) / self.std
|
47 |
-
return tensor_output
|
48 |
-
|
49 |
-
def process(self, ref, supp):
|
50 |
-
flow = []
|
51 |
-
|
52 |
-
ref = [self.preprocess(ref)]
|
53 |
-
supp = [self.preprocess(supp)]
|
54 |
-
|
55 |
-
for level in range(5):
|
56 |
-
ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False))
|
57 |
-
supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False))
|
58 |
-
|
59 |
-
flow = ref[0].new_zeros(
|
60 |
-
[ref[0].size(0), 2,
|
61 |
-
int(math.floor(ref[0].size(2) / 2.0)),
|
62 |
-
int(math.floor(ref[0].size(3) / 2.0))])
|
63 |
-
|
64 |
-
for level in range(len(ref)):
|
65 |
-
upsampled_flow = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0
|
66 |
-
|
67 |
-
if upsampled_flow.size(2) != ref[level].size(2):
|
68 |
-
upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 0, 0, 1], mode='replicate')
|
69 |
-
if upsampled_flow.size(3) != ref[level].size(3):
|
70 |
-
upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 1, 0, 0], mode='replicate')
|
71 |
-
|
72 |
-
flow = self.basic_module[level](torch.cat([
|
73 |
-
ref[level],
|
74 |
-
flow_warp(
|
75 |
-
supp[level], upsampled_flow.permute(0, 2, 3, 1), interp_mode='bilinear', padding_mode='border'),
|
76 |
-
upsampled_flow
|
77 |
-
], 1)) + upsampled_flow
|
78 |
-
|
79 |
-
return flow
|
80 |
-
|
81 |
-
def forward(self, ref, supp):
|
82 |
-
assert ref.size() == supp.size()
|
83 |
-
|
84 |
-
h, w = ref.size(2), ref.size(3)
|
85 |
-
w_floor = math.floor(math.ceil(w / 32.0) * 32.0)
|
86 |
-
h_floor = math.floor(math.ceil(h / 32.0) * 32.0)
|
87 |
-
|
88 |
-
ref = F.interpolate(input=ref, size=(h_floor, w_floor), mode='bilinear', align_corners=False)
|
89 |
-
supp = F.interpolate(input=supp, size=(h_floor, w_floor), mode='bilinear', align_corners=False)
|
90 |
-
|
91 |
-
flow = F.interpolate(input=self.process(ref, supp), size=(h, w), mode='bilinear', align_corners=False)
|
92 |
-
|
93 |
-
flow[:, 0, :, :] *= float(w) / float(w_floor)
|
94 |
-
flow[:, 1, :, :] *= float(h) / float(h_floor)
|
95 |
-
|
96 |
-
return flow
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/srresnet_arch.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
from torch import nn as nn
|
2 |
-
from torch.nn import functional as F
|
3 |
-
|
4 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
5 |
-
from .arch_util import ResidualBlockNoBN, default_init_weights, make_layer
|
6 |
-
|
7 |
-
|
8 |
-
@ARCH_REGISTRY.register()
|
9 |
-
class MSRResNet(nn.Module):
|
10 |
-
"""Modified SRResNet.
|
11 |
-
|
12 |
-
A compacted version modified from SRResNet in
|
13 |
-
"Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"
|
14 |
-
It uses residual blocks without BN, similar to EDSR.
|
15 |
-
Currently, it supports x2, x3 and x4 upsampling scale factor.
|
16 |
-
|
17 |
-
Args:
|
18 |
-
num_in_ch (int): Channel number of inputs. Default: 3.
|
19 |
-
num_out_ch (int): Channel number of outputs. Default: 3.
|
20 |
-
num_feat (int): Channel number of intermediate features. Default: 64.
|
21 |
-
num_block (int): Block number in the body network. Default: 16.
|
22 |
-
upscale (int): Upsampling factor. Support x2, x3 and x4. Default: 4.
|
23 |
-
"""
|
24 |
-
|
25 |
-
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=16, upscale=4):
|
26 |
-
super(MSRResNet, self).__init__()
|
27 |
-
self.upscale = upscale
|
28 |
-
|
29 |
-
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
30 |
-
self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat)
|
31 |
-
|
32 |
-
# upsampling
|
33 |
-
if self.upscale in [2, 3]:
|
34 |
-
self.upconv1 = nn.Conv2d(num_feat, num_feat * self.upscale * self.upscale, 3, 1, 1)
|
35 |
-
self.pixel_shuffle = nn.PixelShuffle(self.upscale)
|
36 |
-
elif self.upscale == 4:
|
37 |
-
self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
|
38 |
-
self.upconv2 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
|
39 |
-
self.pixel_shuffle = nn.PixelShuffle(2)
|
40 |
-
|
41 |
-
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
42 |
-
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
43 |
-
|
44 |
-
# activation function
|
45 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
46 |
-
|
47 |
-
# initialization
|
48 |
-
default_init_weights([self.conv_first, self.upconv1, self.conv_hr, self.conv_last], 0.1)
|
49 |
-
if self.upscale == 4:
|
50 |
-
default_init_weights(self.upconv2, 0.1)
|
51 |
-
|
52 |
-
def forward(self, x):
|
53 |
-
feat = self.lrelu(self.conv_first(x))
|
54 |
-
out = self.body(feat)
|
55 |
-
|
56 |
-
if self.upscale == 4:
|
57 |
-
out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
|
58 |
-
out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
|
59 |
-
elif self.upscale in [2, 3]:
|
60 |
-
out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
|
61 |
-
|
62 |
-
out = self.conv_last(self.lrelu(self.conv_hr(out)))
|
63 |
-
base = F.interpolate(x, scale_factor=self.upscale, mode='bilinear', align_corners=False)
|
64 |
-
out += base
|
65 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/srvgg_arch.py
DELETED
@@ -1,70 +0,0 @@
|
|
1 |
-
from torch import nn as nn
|
2 |
-
from torch.nn import functional as F
|
3 |
-
|
4 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
5 |
-
|
6 |
-
|
7 |
-
@ARCH_REGISTRY.register(suffix='basicsr')
|
8 |
-
class SRVGGNetCompact(nn.Module):
|
9 |
-
"""A compact VGG-style network structure for super-resolution.
|
10 |
-
|
11 |
-
It is a compact network structure, which performs upsampling in the last layer and no convolution is
|
12 |
-
conducted on the HR feature space.
|
13 |
-
|
14 |
-
Args:
|
15 |
-
num_in_ch (int): Channel number of inputs. Default: 3.
|
16 |
-
num_out_ch (int): Channel number of outputs. Default: 3.
|
17 |
-
num_feat (int): Channel number of intermediate features. Default: 64.
|
18 |
-
num_conv (int): Number of convolution layers in the body network. Default: 16.
|
19 |
-
upscale (int): Upsampling factor. Default: 4.
|
20 |
-
act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
|
21 |
-
"""
|
22 |
-
|
23 |
-
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
|
24 |
-
super(SRVGGNetCompact, self).__init__()
|
25 |
-
self.num_in_ch = num_in_ch
|
26 |
-
self.num_out_ch = num_out_ch
|
27 |
-
self.num_feat = num_feat
|
28 |
-
self.num_conv = num_conv
|
29 |
-
self.upscale = upscale
|
30 |
-
self.act_type = act_type
|
31 |
-
|
32 |
-
self.body = nn.ModuleList()
|
33 |
-
# the first conv
|
34 |
-
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
|
35 |
-
# the first activation
|
36 |
-
if act_type == 'relu':
|
37 |
-
activation = nn.ReLU(inplace=True)
|
38 |
-
elif act_type == 'prelu':
|
39 |
-
activation = nn.PReLU(num_parameters=num_feat)
|
40 |
-
elif act_type == 'leakyrelu':
|
41 |
-
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
42 |
-
self.body.append(activation)
|
43 |
-
|
44 |
-
# the body structure
|
45 |
-
for _ in range(num_conv):
|
46 |
-
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
|
47 |
-
# activation
|
48 |
-
if act_type == 'relu':
|
49 |
-
activation = nn.ReLU(inplace=True)
|
50 |
-
elif act_type == 'prelu':
|
51 |
-
activation = nn.PReLU(num_parameters=num_feat)
|
52 |
-
elif act_type == 'leakyrelu':
|
53 |
-
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
54 |
-
self.body.append(activation)
|
55 |
-
|
56 |
-
# the last conv
|
57 |
-
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
|
58 |
-
# upsample
|
59 |
-
self.upsampler = nn.PixelShuffle(upscale)
|
60 |
-
|
61 |
-
def forward(self, x):
|
62 |
-
out = x
|
63 |
-
for i in range(0, len(self.body)):
|
64 |
-
out = self.body[i](out)
|
65 |
-
|
66 |
-
out = self.upsampler(out)
|
67 |
-
# add the nearest upsampled image, so that the network learns the residual
|
68 |
-
base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
|
69 |
-
out += base
|
70 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/stylegan2_arch.py
DELETED
@@ -1,799 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import random
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
from basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu
|
8 |
-
from basicsr.ops.upfirdn2d import upfirdn2d
|
9 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
10 |
-
|
11 |
-
|
12 |
-
class NormStyleCode(nn.Module):
|
13 |
-
|
14 |
-
def forward(self, x):
|
15 |
-
"""Normalize the style codes.
|
16 |
-
|
17 |
-
Args:
|
18 |
-
x (Tensor): Style codes with shape (b, c).
|
19 |
-
|
20 |
-
Returns:
|
21 |
-
Tensor: Normalized tensor.
|
22 |
-
"""
|
23 |
-
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
|
24 |
-
|
25 |
-
|
26 |
-
def make_resample_kernel(k):
|
27 |
-
"""Make resampling kernel for UpFirDn.
|
28 |
-
|
29 |
-
Args:
|
30 |
-
k (list[int]): A list indicating the 1D resample kernel magnitude.
|
31 |
-
|
32 |
-
Returns:
|
33 |
-
Tensor: 2D resampled kernel.
|
34 |
-
"""
|
35 |
-
k = torch.tensor(k, dtype=torch.float32)
|
36 |
-
if k.ndim == 1:
|
37 |
-
k = k[None, :] * k[:, None] # to 2D kernel, outer product
|
38 |
-
# normalize
|
39 |
-
k /= k.sum()
|
40 |
-
return k
|
41 |
-
|
42 |
-
|
43 |
-
class UpFirDnUpsample(nn.Module):
|
44 |
-
"""Upsample, FIR filter, and downsample (upsampole version).
|
45 |
-
|
46 |
-
References:
|
47 |
-
1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501
|
48 |
-
2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501
|
49 |
-
|
50 |
-
Args:
|
51 |
-
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
52 |
-
magnitude.
|
53 |
-
factor (int): Upsampling scale factor. Default: 2.
|
54 |
-
"""
|
55 |
-
|
56 |
-
def __init__(self, resample_kernel, factor=2):
|
57 |
-
super(UpFirDnUpsample, self).__init__()
|
58 |
-
self.kernel = make_resample_kernel(resample_kernel) * (factor**2)
|
59 |
-
self.factor = factor
|
60 |
-
|
61 |
-
pad = self.kernel.shape[0] - factor
|
62 |
-
self.pad = ((pad + 1) // 2 + factor - 1, pad // 2)
|
63 |
-
|
64 |
-
def forward(self, x):
|
65 |
-
out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad)
|
66 |
-
return out
|
67 |
-
|
68 |
-
def __repr__(self):
|
69 |
-
return (f'{self.__class__.__name__}(factor={self.factor})')
|
70 |
-
|
71 |
-
|
72 |
-
class UpFirDnDownsample(nn.Module):
|
73 |
-
"""Upsample, FIR filter, and downsample (downsampole version).
|
74 |
-
|
75 |
-
Args:
|
76 |
-
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
77 |
-
magnitude.
|
78 |
-
factor (int): Downsampling scale factor. Default: 2.
|
79 |
-
"""
|
80 |
-
|
81 |
-
def __init__(self, resample_kernel, factor=2):
|
82 |
-
super(UpFirDnDownsample, self).__init__()
|
83 |
-
self.kernel = make_resample_kernel(resample_kernel)
|
84 |
-
self.factor = factor
|
85 |
-
|
86 |
-
pad = self.kernel.shape[0] - factor
|
87 |
-
self.pad = ((pad + 1) // 2, pad // 2)
|
88 |
-
|
89 |
-
def forward(self, x):
|
90 |
-
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=self.factor, pad=self.pad)
|
91 |
-
return out
|
92 |
-
|
93 |
-
def __repr__(self):
|
94 |
-
return (f'{self.__class__.__name__}(factor={self.factor})')
|
95 |
-
|
96 |
-
|
97 |
-
class UpFirDnSmooth(nn.Module):
|
98 |
-
"""Upsample, FIR filter, and downsample (smooth version).
|
99 |
-
|
100 |
-
Args:
|
101 |
-
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
102 |
-
magnitude.
|
103 |
-
upsample_factor (int): Upsampling scale factor. Default: 1.
|
104 |
-
downsample_factor (int): Downsampling scale factor. Default: 1.
|
105 |
-
kernel_size (int): Kernel size: Default: 1.
|
106 |
-
"""
|
107 |
-
|
108 |
-
def __init__(self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1):
|
109 |
-
super(UpFirDnSmooth, self).__init__()
|
110 |
-
self.upsample_factor = upsample_factor
|
111 |
-
self.downsample_factor = downsample_factor
|
112 |
-
self.kernel = make_resample_kernel(resample_kernel)
|
113 |
-
if upsample_factor > 1:
|
114 |
-
self.kernel = self.kernel * (upsample_factor**2)
|
115 |
-
|
116 |
-
if upsample_factor > 1:
|
117 |
-
pad = (self.kernel.shape[0] - upsample_factor) - (kernel_size - 1)
|
118 |
-
self.pad = ((pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1)
|
119 |
-
elif downsample_factor > 1:
|
120 |
-
pad = (self.kernel.shape[0] - downsample_factor) + (kernel_size - 1)
|
121 |
-
self.pad = ((pad + 1) // 2, pad // 2)
|
122 |
-
else:
|
123 |
-
raise NotImplementedError
|
124 |
-
|
125 |
-
def forward(self, x):
|
126 |
-
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
|
127 |
-
return out
|
128 |
-
|
129 |
-
def __repr__(self):
|
130 |
-
return (f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}'
|
131 |
-
f', downsample_factor={self.downsample_factor})')
|
132 |
-
|
133 |
-
|
134 |
-
class EqualLinear(nn.Module):
|
135 |
-
"""Equalized Linear as StyleGAN2.
|
136 |
-
|
137 |
-
Args:
|
138 |
-
in_channels (int): Size of each sample.
|
139 |
-
out_channels (int): Size of each output sample.
|
140 |
-
bias (bool): If set to ``False``, the layer will not learn an additive
|
141 |
-
bias. Default: ``True``.
|
142 |
-
bias_init_val (float): Bias initialized value. Default: 0.
|
143 |
-
lr_mul (float): Learning rate multiplier. Default: 1.
|
144 |
-
activation (None | str): The activation after ``linear`` operation.
|
145 |
-
Supported: 'fused_lrelu', None. Default: None.
|
146 |
-
"""
|
147 |
-
|
148 |
-
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None):
|
149 |
-
super(EqualLinear, self).__init__()
|
150 |
-
self.in_channels = in_channels
|
151 |
-
self.out_channels = out_channels
|
152 |
-
self.lr_mul = lr_mul
|
153 |
-
self.activation = activation
|
154 |
-
if self.activation not in ['fused_lrelu', None]:
|
155 |
-
raise ValueError(f'Wrong activation value in EqualLinear: {activation}'
|
156 |
-
"Supported ones are: ['fused_lrelu', None].")
|
157 |
-
self.scale = (1 / math.sqrt(in_channels)) * lr_mul
|
158 |
-
|
159 |
-
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
|
160 |
-
if bias:
|
161 |
-
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
|
162 |
-
else:
|
163 |
-
self.register_parameter('bias', None)
|
164 |
-
|
165 |
-
def forward(self, x):
|
166 |
-
if self.bias is None:
|
167 |
-
bias = None
|
168 |
-
else:
|
169 |
-
bias = self.bias * self.lr_mul
|
170 |
-
if self.activation == 'fused_lrelu':
|
171 |
-
out = F.linear(x, self.weight * self.scale)
|
172 |
-
out = fused_leaky_relu(out, bias)
|
173 |
-
else:
|
174 |
-
out = F.linear(x, self.weight * self.scale, bias=bias)
|
175 |
-
return out
|
176 |
-
|
177 |
-
def __repr__(self):
|
178 |
-
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
|
179 |
-
f'out_channels={self.out_channels}, bias={self.bias is not None})')
|
180 |
-
|
181 |
-
|
182 |
-
class ModulatedConv2d(nn.Module):
|
183 |
-
"""Modulated Conv2d used in StyleGAN2.
|
184 |
-
|
185 |
-
There is no bias in ModulatedConv2d.
|
186 |
-
|
187 |
-
Args:
|
188 |
-
in_channels (int): Channel number of the input.
|
189 |
-
out_channels (int): Channel number of the output.
|
190 |
-
kernel_size (int): Size of the convolving kernel.
|
191 |
-
num_style_feat (int): Channel number of style features.
|
192 |
-
demodulate (bool): Whether to demodulate in the conv layer.
|
193 |
-
Default: True.
|
194 |
-
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
|
195 |
-
Default: None.
|
196 |
-
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
197 |
-
magnitude. Default: (1, 3, 3, 1).
|
198 |
-
eps (float): A value added to the denominator for numerical stability.
|
199 |
-
Default: 1e-8.
|
200 |
-
"""
|
201 |
-
|
202 |
-
def __init__(self,
|
203 |
-
in_channels,
|
204 |
-
out_channels,
|
205 |
-
kernel_size,
|
206 |
-
num_style_feat,
|
207 |
-
demodulate=True,
|
208 |
-
sample_mode=None,
|
209 |
-
resample_kernel=(1, 3, 3, 1),
|
210 |
-
eps=1e-8):
|
211 |
-
super(ModulatedConv2d, self).__init__()
|
212 |
-
self.in_channels = in_channels
|
213 |
-
self.out_channels = out_channels
|
214 |
-
self.kernel_size = kernel_size
|
215 |
-
self.demodulate = demodulate
|
216 |
-
self.sample_mode = sample_mode
|
217 |
-
self.eps = eps
|
218 |
-
|
219 |
-
if self.sample_mode == 'upsample':
|
220 |
-
self.smooth = UpFirDnSmooth(
|
221 |
-
resample_kernel, upsample_factor=2, downsample_factor=1, kernel_size=kernel_size)
|
222 |
-
elif self.sample_mode == 'downsample':
|
223 |
-
self.smooth = UpFirDnSmooth(
|
224 |
-
resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size)
|
225 |
-
elif self.sample_mode is None:
|
226 |
-
pass
|
227 |
-
else:
|
228 |
-
raise ValueError(f'Wrong sample mode {self.sample_mode}, '
|
229 |
-
"supported ones are ['upsample', 'downsample', None].")
|
230 |
-
|
231 |
-
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
|
232 |
-
# modulation inside each modulated conv
|
233 |
-
self.modulation = EqualLinear(
|
234 |
-
num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None)
|
235 |
-
|
236 |
-
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size))
|
237 |
-
self.padding = kernel_size // 2
|
238 |
-
|
239 |
-
def forward(self, x, style):
|
240 |
-
"""Forward function.
|
241 |
-
|
242 |
-
Args:
|
243 |
-
x (Tensor): Tensor with shape (b, c, h, w).
|
244 |
-
style (Tensor): Tensor with shape (b, num_style_feat).
|
245 |
-
|
246 |
-
Returns:
|
247 |
-
Tensor: Modulated tensor after convolution.
|
248 |
-
"""
|
249 |
-
b, c, h, w = x.shape # c = c_in
|
250 |
-
# weight modulation
|
251 |
-
style = self.modulation(style).view(b, 1, c, 1, 1)
|
252 |
-
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
|
253 |
-
weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
|
254 |
-
|
255 |
-
if self.demodulate:
|
256 |
-
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
|
257 |
-
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
|
258 |
-
|
259 |
-
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
|
260 |
-
|
261 |
-
if self.sample_mode == 'upsample':
|
262 |
-
x = x.view(1, b * c, h, w)
|
263 |
-
weight = weight.view(b, self.out_channels, c, self.kernel_size, self.kernel_size)
|
264 |
-
weight = weight.transpose(1, 2).reshape(b * c, self.out_channels, self.kernel_size, self.kernel_size)
|
265 |
-
out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
|
266 |
-
out = out.view(b, self.out_channels, *out.shape[2:4])
|
267 |
-
out = self.smooth(out)
|
268 |
-
elif self.sample_mode == 'downsample':
|
269 |
-
x = self.smooth(x)
|
270 |
-
x = x.view(1, b * c, *x.shape[2:4])
|
271 |
-
out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
|
272 |
-
out = out.view(b, self.out_channels, *out.shape[2:4])
|
273 |
-
else:
|
274 |
-
x = x.view(1, b * c, h, w)
|
275 |
-
# weight: (b*c_out, c_in, k, k), groups=b
|
276 |
-
out = F.conv2d(x, weight, padding=self.padding, groups=b)
|
277 |
-
out = out.view(b, self.out_channels, *out.shape[2:4])
|
278 |
-
|
279 |
-
return out
|
280 |
-
|
281 |
-
def __repr__(self):
|
282 |
-
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
|
283 |
-
f'out_channels={self.out_channels}, '
|
284 |
-
f'kernel_size={self.kernel_size}, '
|
285 |
-
f'demodulate={self.demodulate}, sample_mode={self.sample_mode})')
|
286 |
-
|
287 |
-
|
288 |
-
class StyleConv(nn.Module):
|
289 |
-
"""Style conv.
|
290 |
-
|
291 |
-
Args:
|
292 |
-
in_channels (int): Channel number of the input.
|
293 |
-
out_channels (int): Channel number of the output.
|
294 |
-
kernel_size (int): Size of the convolving kernel.
|
295 |
-
num_style_feat (int): Channel number of style features.
|
296 |
-
demodulate (bool): Whether demodulate in the conv layer. Default: True.
|
297 |
-
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
|
298 |
-
Default: None.
|
299 |
-
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
300 |
-
magnitude. Default: (1, 3, 3, 1).
|
301 |
-
"""
|
302 |
-
|
303 |
-
def __init__(self,
|
304 |
-
in_channels,
|
305 |
-
out_channels,
|
306 |
-
kernel_size,
|
307 |
-
num_style_feat,
|
308 |
-
demodulate=True,
|
309 |
-
sample_mode=None,
|
310 |
-
resample_kernel=(1, 3, 3, 1)):
|
311 |
-
super(StyleConv, self).__init__()
|
312 |
-
self.modulated_conv = ModulatedConv2d(
|
313 |
-
in_channels,
|
314 |
-
out_channels,
|
315 |
-
kernel_size,
|
316 |
-
num_style_feat,
|
317 |
-
demodulate=demodulate,
|
318 |
-
sample_mode=sample_mode,
|
319 |
-
resample_kernel=resample_kernel)
|
320 |
-
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
|
321 |
-
self.activate = FusedLeakyReLU(out_channels)
|
322 |
-
|
323 |
-
def forward(self, x, style, noise=None):
|
324 |
-
# modulate
|
325 |
-
out = self.modulated_conv(x, style)
|
326 |
-
# noise injection
|
327 |
-
if noise is None:
|
328 |
-
b, _, h, w = out.shape
|
329 |
-
noise = out.new_empty(b, 1, h, w).normal_()
|
330 |
-
out = out + self.weight * noise
|
331 |
-
# activation (with bias)
|
332 |
-
out = self.activate(out)
|
333 |
-
return out
|
334 |
-
|
335 |
-
|
336 |
-
class ToRGB(nn.Module):
|
337 |
-
"""To RGB from features.
|
338 |
-
|
339 |
-
Args:
|
340 |
-
in_channels (int): Channel number of input.
|
341 |
-
num_style_feat (int): Channel number of style features.
|
342 |
-
upsample (bool): Whether to upsample. Default: True.
|
343 |
-
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
344 |
-
magnitude. Default: (1, 3, 3, 1).
|
345 |
-
"""
|
346 |
-
|
347 |
-
def __init__(self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1)):
|
348 |
-
super(ToRGB, self).__init__()
|
349 |
-
if upsample:
|
350 |
-
self.upsample = UpFirDnUpsample(resample_kernel, factor=2)
|
351 |
-
else:
|
352 |
-
self.upsample = None
|
353 |
-
self.modulated_conv = ModulatedConv2d(
|
354 |
-
in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
|
355 |
-
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
356 |
-
|
357 |
-
def forward(self, x, style, skip=None):
|
358 |
-
"""Forward function.
|
359 |
-
|
360 |
-
Args:
|
361 |
-
x (Tensor): Feature tensor with shape (b, c, h, w).
|
362 |
-
style (Tensor): Tensor with shape (b, num_style_feat).
|
363 |
-
skip (Tensor): Base/skip tensor. Default: None.
|
364 |
-
|
365 |
-
Returns:
|
366 |
-
Tensor: RGB images.
|
367 |
-
"""
|
368 |
-
out = self.modulated_conv(x, style)
|
369 |
-
out = out + self.bias
|
370 |
-
if skip is not None:
|
371 |
-
if self.upsample:
|
372 |
-
skip = self.upsample(skip)
|
373 |
-
out = out + skip
|
374 |
-
return out
|
375 |
-
|
376 |
-
|
377 |
-
class ConstantInput(nn.Module):
|
378 |
-
"""Constant input.
|
379 |
-
|
380 |
-
Args:
|
381 |
-
num_channel (int): Channel number of constant input.
|
382 |
-
size (int): Spatial size of constant input.
|
383 |
-
"""
|
384 |
-
|
385 |
-
def __init__(self, num_channel, size):
|
386 |
-
super(ConstantInput, self).__init__()
|
387 |
-
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
|
388 |
-
|
389 |
-
def forward(self, batch):
|
390 |
-
out = self.weight.repeat(batch, 1, 1, 1)
|
391 |
-
return out
|
392 |
-
|
393 |
-
|
394 |
-
@ARCH_REGISTRY.register()
|
395 |
-
class StyleGAN2Generator(nn.Module):
|
396 |
-
"""StyleGAN2 Generator.
|
397 |
-
|
398 |
-
Args:
|
399 |
-
out_size (int): The spatial size of outputs.
|
400 |
-
num_style_feat (int): Channel number of style features. Default: 512.
|
401 |
-
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
402 |
-
channel_multiplier (int): Channel multiplier for large networks of
|
403 |
-
StyleGAN2. Default: 2.
|
404 |
-
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
405 |
-
magnitude. A cross production will be applied to extent 1D resample
|
406 |
-
kernel to 2D resample kernel. Default: (1, 3, 3, 1).
|
407 |
-
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
|
408 |
-
narrow (float): Narrow ratio for channels. Default: 1.0.
|
409 |
-
"""
|
410 |
-
|
411 |
-
def __init__(self,
|
412 |
-
out_size,
|
413 |
-
num_style_feat=512,
|
414 |
-
num_mlp=8,
|
415 |
-
channel_multiplier=2,
|
416 |
-
resample_kernel=(1, 3, 3, 1),
|
417 |
-
lr_mlp=0.01,
|
418 |
-
narrow=1):
|
419 |
-
super(StyleGAN2Generator, self).__init__()
|
420 |
-
# Style MLP layers
|
421 |
-
self.num_style_feat = num_style_feat
|
422 |
-
style_mlp_layers = [NormStyleCode()]
|
423 |
-
for i in range(num_mlp):
|
424 |
-
style_mlp_layers.append(
|
425 |
-
EqualLinear(
|
426 |
-
num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp,
|
427 |
-
activation='fused_lrelu'))
|
428 |
-
self.style_mlp = nn.Sequential(*style_mlp_layers)
|
429 |
-
|
430 |
-
channels = {
|
431 |
-
'4': int(512 * narrow),
|
432 |
-
'8': int(512 * narrow),
|
433 |
-
'16': int(512 * narrow),
|
434 |
-
'32': int(512 * narrow),
|
435 |
-
'64': int(256 * channel_multiplier * narrow),
|
436 |
-
'128': int(128 * channel_multiplier * narrow),
|
437 |
-
'256': int(64 * channel_multiplier * narrow),
|
438 |
-
'512': int(32 * channel_multiplier * narrow),
|
439 |
-
'1024': int(16 * channel_multiplier * narrow)
|
440 |
-
}
|
441 |
-
self.channels = channels
|
442 |
-
|
443 |
-
self.constant_input = ConstantInput(channels['4'], size=4)
|
444 |
-
self.style_conv1 = StyleConv(
|
445 |
-
channels['4'],
|
446 |
-
channels['4'],
|
447 |
-
kernel_size=3,
|
448 |
-
num_style_feat=num_style_feat,
|
449 |
-
demodulate=True,
|
450 |
-
sample_mode=None,
|
451 |
-
resample_kernel=resample_kernel)
|
452 |
-
self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, resample_kernel=resample_kernel)
|
453 |
-
|
454 |
-
self.log_size = int(math.log(out_size, 2))
|
455 |
-
self.num_layers = (self.log_size - 2) * 2 + 1
|
456 |
-
self.num_latent = self.log_size * 2 - 2
|
457 |
-
|
458 |
-
self.style_convs = nn.ModuleList()
|
459 |
-
self.to_rgbs = nn.ModuleList()
|
460 |
-
self.noises = nn.Module()
|
461 |
-
|
462 |
-
in_channels = channels['4']
|
463 |
-
# noise
|
464 |
-
for layer_idx in range(self.num_layers):
|
465 |
-
resolution = 2**((layer_idx + 5) // 2)
|
466 |
-
shape = [1, 1, resolution, resolution]
|
467 |
-
self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
|
468 |
-
# style convs and to_rgbs
|
469 |
-
for i in range(3, self.log_size + 1):
|
470 |
-
out_channels = channels[f'{2**i}']
|
471 |
-
self.style_convs.append(
|
472 |
-
StyleConv(
|
473 |
-
in_channels,
|
474 |
-
out_channels,
|
475 |
-
kernel_size=3,
|
476 |
-
num_style_feat=num_style_feat,
|
477 |
-
demodulate=True,
|
478 |
-
sample_mode='upsample',
|
479 |
-
resample_kernel=resample_kernel,
|
480 |
-
))
|
481 |
-
self.style_convs.append(
|
482 |
-
StyleConv(
|
483 |
-
out_channels,
|
484 |
-
out_channels,
|
485 |
-
kernel_size=3,
|
486 |
-
num_style_feat=num_style_feat,
|
487 |
-
demodulate=True,
|
488 |
-
sample_mode=None,
|
489 |
-
resample_kernel=resample_kernel))
|
490 |
-
self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True, resample_kernel=resample_kernel))
|
491 |
-
in_channels = out_channels
|
492 |
-
|
493 |
-
def make_noise(self):
|
494 |
-
"""Make noise for noise injection."""
|
495 |
-
device = self.constant_input.weight.device
|
496 |
-
noises = [torch.randn(1, 1, 4, 4, device=device)]
|
497 |
-
|
498 |
-
for i in range(3, self.log_size + 1):
|
499 |
-
for _ in range(2):
|
500 |
-
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
|
501 |
-
|
502 |
-
return noises
|
503 |
-
|
504 |
-
def get_latent(self, x):
|
505 |
-
return self.style_mlp(x)
|
506 |
-
|
507 |
-
def mean_latent(self, num_latent):
|
508 |
-
latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
|
509 |
-
latent = self.style_mlp(latent_in).mean(0, keepdim=True)
|
510 |
-
return latent
|
511 |
-
|
512 |
-
def forward(self,
|
513 |
-
styles,
|
514 |
-
input_is_latent=False,
|
515 |
-
noise=None,
|
516 |
-
randomize_noise=True,
|
517 |
-
truncation=1,
|
518 |
-
truncation_latent=None,
|
519 |
-
inject_index=None,
|
520 |
-
return_latents=False):
|
521 |
-
"""Forward function for StyleGAN2Generator.
|
522 |
-
|
523 |
-
Args:
|
524 |
-
styles (list[Tensor]): Sample codes of styles.
|
525 |
-
input_is_latent (bool): Whether input is latent style.
|
526 |
-
Default: False.
|
527 |
-
noise (Tensor | None): Input noise or None. Default: None.
|
528 |
-
randomize_noise (bool): Randomize noise, used when 'noise' is
|
529 |
-
False. Default: True.
|
530 |
-
truncation (float): TODO. Default: 1.
|
531 |
-
truncation_latent (Tensor | None): TODO. Default: None.
|
532 |
-
inject_index (int | None): The injection index for mixing noise.
|
533 |
-
Default: None.
|
534 |
-
return_latents (bool): Whether to return style latents.
|
535 |
-
Default: False.
|
536 |
-
"""
|
537 |
-
# style codes -> latents with Style MLP layer
|
538 |
-
if not input_is_latent:
|
539 |
-
styles = [self.style_mlp(s) for s in styles]
|
540 |
-
# noises
|
541 |
-
if noise is None:
|
542 |
-
if randomize_noise:
|
543 |
-
noise = [None] * self.num_layers # for each style conv layer
|
544 |
-
else: # use the stored noise
|
545 |
-
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
|
546 |
-
# style truncation
|
547 |
-
if truncation < 1:
|
548 |
-
style_truncation = []
|
549 |
-
for style in styles:
|
550 |
-
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
|
551 |
-
styles = style_truncation
|
552 |
-
# get style latent with injection
|
553 |
-
if len(styles) == 1:
|
554 |
-
inject_index = self.num_latent
|
555 |
-
|
556 |
-
if styles[0].ndim < 3:
|
557 |
-
# repeat latent code for all the layers
|
558 |
-
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
559 |
-
else: # used for encoder with different latent code for each layer
|
560 |
-
latent = styles[0]
|
561 |
-
elif len(styles) == 2: # mixing noises
|
562 |
-
if inject_index is None:
|
563 |
-
inject_index = random.randint(1, self.num_latent - 1)
|
564 |
-
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
565 |
-
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
|
566 |
-
latent = torch.cat([latent1, latent2], 1)
|
567 |
-
|
568 |
-
# main generation
|
569 |
-
out = self.constant_input(latent.shape[0])
|
570 |
-
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
|
571 |
-
skip = self.to_rgb1(out, latent[:, 1])
|
572 |
-
|
573 |
-
i = 1
|
574 |
-
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
|
575 |
-
noise[2::2], self.to_rgbs):
|
576 |
-
out = conv1(out, latent[:, i], noise=noise1)
|
577 |
-
out = conv2(out, latent[:, i + 1], noise=noise2)
|
578 |
-
skip = to_rgb(out, latent[:, i + 2], skip)
|
579 |
-
i += 2
|
580 |
-
|
581 |
-
image = skip
|
582 |
-
|
583 |
-
if return_latents:
|
584 |
-
return image, latent
|
585 |
-
else:
|
586 |
-
return image, None
|
587 |
-
|
588 |
-
|
589 |
-
class ScaledLeakyReLU(nn.Module):
|
590 |
-
"""Scaled LeakyReLU.
|
591 |
-
|
592 |
-
Args:
|
593 |
-
negative_slope (float): Negative slope. Default: 0.2.
|
594 |
-
"""
|
595 |
-
|
596 |
-
def __init__(self, negative_slope=0.2):
|
597 |
-
super(ScaledLeakyReLU, self).__init__()
|
598 |
-
self.negative_slope = negative_slope
|
599 |
-
|
600 |
-
def forward(self, x):
|
601 |
-
out = F.leaky_relu(x, negative_slope=self.negative_slope)
|
602 |
-
return out * math.sqrt(2)
|
603 |
-
|
604 |
-
|
605 |
-
class EqualConv2d(nn.Module):
|
606 |
-
"""Equalized Linear as StyleGAN2.
|
607 |
-
|
608 |
-
Args:
|
609 |
-
in_channels (int): Channel number of the input.
|
610 |
-
out_channels (int): Channel number of the output.
|
611 |
-
kernel_size (int): Size of the convolving kernel.
|
612 |
-
stride (int): Stride of the convolution. Default: 1
|
613 |
-
padding (int): Zero-padding added to both sides of the input.
|
614 |
-
Default: 0.
|
615 |
-
bias (bool): If ``True``, adds a learnable bias to the output.
|
616 |
-
Default: ``True``.
|
617 |
-
bias_init_val (float): Bias initialized value. Default: 0.
|
618 |
-
"""
|
619 |
-
|
620 |
-
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0):
|
621 |
-
super(EqualConv2d, self).__init__()
|
622 |
-
self.in_channels = in_channels
|
623 |
-
self.out_channels = out_channels
|
624 |
-
self.kernel_size = kernel_size
|
625 |
-
self.stride = stride
|
626 |
-
self.padding = padding
|
627 |
-
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
|
628 |
-
|
629 |
-
self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
|
630 |
-
if bias:
|
631 |
-
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
|
632 |
-
else:
|
633 |
-
self.register_parameter('bias', None)
|
634 |
-
|
635 |
-
def forward(self, x):
|
636 |
-
out = F.conv2d(
|
637 |
-
x,
|
638 |
-
self.weight * self.scale,
|
639 |
-
bias=self.bias,
|
640 |
-
stride=self.stride,
|
641 |
-
padding=self.padding,
|
642 |
-
)
|
643 |
-
|
644 |
-
return out
|
645 |
-
|
646 |
-
def __repr__(self):
|
647 |
-
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
|
648 |
-
f'out_channels={self.out_channels}, '
|
649 |
-
f'kernel_size={self.kernel_size},'
|
650 |
-
f' stride={self.stride}, padding={self.padding}, '
|
651 |
-
f'bias={self.bias is not None})')
|
652 |
-
|
653 |
-
|
654 |
-
class ConvLayer(nn.Sequential):
|
655 |
-
"""Conv Layer used in StyleGAN2 Discriminator.
|
656 |
-
|
657 |
-
Args:
|
658 |
-
in_channels (int): Channel number of the input.
|
659 |
-
out_channels (int): Channel number of the output.
|
660 |
-
kernel_size (int): Kernel size.
|
661 |
-
downsample (bool): Whether downsample by a factor of 2.
|
662 |
-
Default: False.
|
663 |
-
resample_kernel (list[int]): A list indicating the 1D resample
|
664 |
-
kernel magnitude. A cross production will be applied to
|
665 |
-
extent 1D resample kernel to 2D resample kernel.
|
666 |
-
Default: (1, 3, 3, 1).
|
667 |
-
bias (bool): Whether with bias. Default: True.
|
668 |
-
activate (bool): Whether use activateion. Default: True.
|
669 |
-
"""
|
670 |
-
|
671 |
-
def __init__(self,
|
672 |
-
in_channels,
|
673 |
-
out_channels,
|
674 |
-
kernel_size,
|
675 |
-
downsample=False,
|
676 |
-
resample_kernel=(1, 3, 3, 1),
|
677 |
-
bias=True,
|
678 |
-
activate=True):
|
679 |
-
layers = []
|
680 |
-
# downsample
|
681 |
-
if downsample:
|
682 |
-
layers.append(
|
683 |
-
UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size))
|
684 |
-
stride = 2
|
685 |
-
self.padding = 0
|
686 |
-
else:
|
687 |
-
stride = 1
|
688 |
-
self.padding = kernel_size // 2
|
689 |
-
# conv
|
690 |
-
layers.append(
|
691 |
-
EqualConv2d(
|
692 |
-
in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias
|
693 |
-
and not activate))
|
694 |
-
# activation
|
695 |
-
if activate:
|
696 |
-
if bias:
|
697 |
-
layers.append(FusedLeakyReLU(out_channels))
|
698 |
-
else:
|
699 |
-
layers.append(ScaledLeakyReLU(0.2))
|
700 |
-
|
701 |
-
super(ConvLayer, self).__init__(*layers)
|
702 |
-
|
703 |
-
|
704 |
-
class ResBlock(nn.Module):
|
705 |
-
"""Residual block used in StyleGAN2 Discriminator.
|
706 |
-
|
707 |
-
Args:
|
708 |
-
in_channels (int): Channel number of the input.
|
709 |
-
out_channels (int): Channel number of the output.
|
710 |
-
resample_kernel (list[int]): A list indicating the 1D resample
|
711 |
-
kernel magnitude. A cross production will be applied to
|
712 |
-
extent 1D resample kernel to 2D resample kernel.
|
713 |
-
Default: (1, 3, 3, 1).
|
714 |
-
"""
|
715 |
-
|
716 |
-
def __init__(self, in_channels, out_channels, resample_kernel=(1, 3, 3, 1)):
|
717 |
-
super(ResBlock, self).__init__()
|
718 |
-
|
719 |
-
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
|
720 |
-
self.conv2 = ConvLayer(
|
721 |
-
in_channels, out_channels, 3, downsample=True, resample_kernel=resample_kernel, bias=True, activate=True)
|
722 |
-
self.skip = ConvLayer(
|
723 |
-
in_channels, out_channels, 1, downsample=True, resample_kernel=resample_kernel, bias=False, activate=False)
|
724 |
-
|
725 |
-
def forward(self, x):
|
726 |
-
out = self.conv1(x)
|
727 |
-
out = self.conv2(out)
|
728 |
-
skip = self.skip(x)
|
729 |
-
out = (out + skip) / math.sqrt(2)
|
730 |
-
return out
|
731 |
-
|
732 |
-
|
733 |
-
@ARCH_REGISTRY.register()
|
734 |
-
class StyleGAN2Discriminator(nn.Module):
|
735 |
-
"""StyleGAN2 Discriminator.
|
736 |
-
|
737 |
-
Args:
|
738 |
-
out_size (int): The spatial size of outputs.
|
739 |
-
channel_multiplier (int): Channel multiplier for large networks of
|
740 |
-
StyleGAN2. Default: 2.
|
741 |
-
resample_kernel (list[int]): A list indicating the 1D resample kernel
|
742 |
-
magnitude. A cross production will be applied to extent 1D resample
|
743 |
-
kernel to 2D resample kernel. Default: (1, 3, 3, 1).
|
744 |
-
stddev_group (int): For group stddev statistics. Default: 4.
|
745 |
-
narrow (float): Narrow ratio for channels. Default: 1.0.
|
746 |
-
"""
|
747 |
-
|
748 |
-
def __init__(self, out_size, channel_multiplier=2, resample_kernel=(1, 3, 3, 1), stddev_group=4, narrow=1):
|
749 |
-
super(StyleGAN2Discriminator, self).__init__()
|
750 |
-
|
751 |
-
channels = {
|
752 |
-
'4': int(512 * narrow),
|
753 |
-
'8': int(512 * narrow),
|
754 |
-
'16': int(512 * narrow),
|
755 |
-
'32': int(512 * narrow),
|
756 |
-
'64': int(256 * channel_multiplier * narrow),
|
757 |
-
'128': int(128 * channel_multiplier * narrow),
|
758 |
-
'256': int(64 * channel_multiplier * narrow),
|
759 |
-
'512': int(32 * channel_multiplier * narrow),
|
760 |
-
'1024': int(16 * channel_multiplier * narrow)
|
761 |
-
}
|
762 |
-
|
763 |
-
log_size = int(math.log(out_size, 2))
|
764 |
-
|
765 |
-
conv_body = [ConvLayer(3, channels[f'{out_size}'], 1, bias=True, activate=True)]
|
766 |
-
|
767 |
-
in_channels = channels[f'{out_size}']
|
768 |
-
for i in range(log_size, 2, -1):
|
769 |
-
out_channels = channels[f'{2**(i - 1)}']
|
770 |
-
conv_body.append(ResBlock(in_channels, out_channels, resample_kernel))
|
771 |
-
in_channels = out_channels
|
772 |
-
self.conv_body = nn.Sequential(*conv_body)
|
773 |
-
|
774 |
-
self.final_conv = ConvLayer(in_channels + 1, channels['4'], 3, bias=True, activate=True)
|
775 |
-
self.final_linear = nn.Sequential(
|
776 |
-
EqualLinear(
|
777 |
-
channels['4'] * 4 * 4, channels['4'], bias=True, bias_init_val=0, lr_mul=1, activation='fused_lrelu'),
|
778 |
-
EqualLinear(channels['4'], 1, bias=True, bias_init_val=0, lr_mul=1, activation=None),
|
779 |
-
)
|
780 |
-
self.stddev_group = stddev_group
|
781 |
-
self.stddev_feat = 1
|
782 |
-
|
783 |
-
def forward(self, x):
|
784 |
-
out = self.conv_body(x)
|
785 |
-
|
786 |
-
b, c, h, w = out.shape
|
787 |
-
# concatenate a group stddev statistics to out
|
788 |
-
group = min(b, self.stddev_group) # Minibatch must be divisible by (or smaller than) group_size
|
789 |
-
stddev = out.view(group, -1, self.stddev_feat, c // self.stddev_feat, h, w)
|
790 |
-
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
791 |
-
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
792 |
-
stddev = stddev.repeat(group, 1, h, w)
|
793 |
-
out = torch.cat([out, stddev], 1)
|
794 |
-
|
795 |
-
out = self.final_conv(out)
|
796 |
-
out = out.view(b, -1)
|
797 |
-
out = self.final_linear(out)
|
798 |
-
|
799 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/stylegan2_bilinear_arch.py
DELETED
@@ -1,614 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import random
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
from basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu
|
8 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
9 |
-
|
10 |
-
|
11 |
-
class NormStyleCode(nn.Module):
|
12 |
-
|
13 |
-
def forward(self, x):
|
14 |
-
"""Normalize the style codes.
|
15 |
-
|
16 |
-
Args:
|
17 |
-
x (Tensor): Style codes with shape (b, c).
|
18 |
-
|
19 |
-
Returns:
|
20 |
-
Tensor: Normalized tensor.
|
21 |
-
"""
|
22 |
-
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
|
23 |
-
|
24 |
-
|
25 |
-
class EqualLinear(nn.Module):
|
26 |
-
"""Equalized Linear as StyleGAN2.
|
27 |
-
|
28 |
-
Args:
|
29 |
-
in_channels (int): Size of each sample.
|
30 |
-
out_channels (int): Size of each output sample.
|
31 |
-
bias (bool): If set to ``False``, the layer will not learn an additive
|
32 |
-
bias. Default: ``True``.
|
33 |
-
bias_init_val (float): Bias initialized value. Default: 0.
|
34 |
-
lr_mul (float): Learning rate multiplier. Default: 1.
|
35 |
-
activation (None | str): The activation after ``linear`` operation.
|
36 |
-
Supported: 'fused_lrelu', None. Default: None.
|
37 |
-
"""
|
38 |
-
|
39 |
-
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None):
|
40 |
-
super(EqualLinear, self).__init__()
|
41 |
-
self.in_channels = in_channels
|
42 |
-
self.out_channels = out_channels
|
43 |
-
self.lr_mul = lr_mul
|
44 |
-
self.activation = activation
|
45 |
-
if self.activation not in ['fused_lrelu', None]:
|
46 |
-
raise ValueError(f'Wrong activation value in EqualLinear: {activation}'
|
47 |
-
"Supported ones are: ['fused_lrelu', None].")
|
48 |
-
self.scale = (1 / math.sqrt(in_channels)) * lr_mul
|
49 |
-
|
50 |
-
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
|
51 |
-
if bias:
|
52 |
-
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
|
53 |
-
else:
|
54 |
-
self.register_parameter('bias', None)
|
55 |
-
|
56 |
-
def forward(self, x):
|
57 |
-
if self.bias is None:
|
58 |
-
bias = None
|
59 |
-
else:
|
60 |
-
bias = self.bias * self.lr_mul
|
61 |
-
if self.activation == 'fused_lrelu':
|
62 |
-
out = F.linear(x, self.weight * self.scale)
|
63 |
-
out = fused_leaky_relu(out, bias)
|
64 |
-
else:
|
65 |
-
out = F.linear(x, self.weight * self.scale, bias=bias)
|
66 |
-
return out
|
67 |
-
|
68 |
-
def __repr__(self):
|
69 |
-
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
|
70 |
-
f'out_channels={self.out_channels}, bias={self.bias is not None})')
|
71 |
-
|
72 |
-
|
73 |
-
class ModulatedConv2d(nn.Module):
|
74 |
-
"""Modulated Conv2d used in StyleGAN2.
|
75 |
-
|
76 |
-
There is no bias in ModulatedConv2d.
|
77 |
-
|
78 |
-
Args:
|
79 |
-
in_channels (int): Channel number of the input.
|
80 |
-
out_channels (int): Channel number of the output.
|
81 |
-
kernel_size (int): Size of the convolving kernel.
|
82 |
-
num_style_feat (int): Channel number of style features.
|
83 |
-
demodulate (bool): Whether to demodulate in the conv layer.
|
84 |
-
Default: True.
|
85 |
-
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
|
86 |
-
Default: None.
|
87 |
-
eps (float): A value added to the denominator for numerical stability.
|
88 |
-
Default: 1e-8.
|
89 |
-
"""
|
90 |
-
|
91 |
-
def __init__(self,
|
92 |
-
in_channels,
|
93 |
-
out_channels,
|
94 |
-
kernel_size,
|
95 |
-
num_style_feat,
|
96 |
-
demodulate=True,
|
97 |
-
sample_mode=None,
|
98 |
-
eps=1e-8,
|
99 |
-
interpolation_mode='bilinear'):
|
100 |
-
super(ModulatedConv2d, self).__init__()
|
101 |
-
self.in_channels = in_channels
|
102 |
-
self.out_channels = out_channels
|
103 |
-
self.kernel_size = kernel_size
|
104 |
-
self.demodulate = demodulate
|
105 |
-
self.sample_mode = sample_mode
|
106 |
-
self.eps = eps
|
107 |
-
self.interpolation_mode = interpolation_mode
|
108 |
-
if self.interpolation_mode == 'nearest':
|
109 |
-
self.align_corners = None
|
110 |
-
else:
|
111 |
-
self.align_corners = False
|
112 |
-
|
113 |
-
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
|
114 |
-
# modulation inside each modulated conv
|
115 |
-
self.modulation = EqualLinear(
|
116 |
-
num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None)
|
117 |
-
|
118 |
-
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size))
|
119 |
-
self.padding = kernel_size // 2
|
120 |
-
|
121 |
-
def forward(self, x, style):
|
122 |
-
"""Forward function.
|
123 |
-
|
124 |
-
Args:
|
125 |
-
x (Tensor): Tensor with shape (b, c, h, w).
|
126 |
-
style (Tensor): Tensor with shape (b, num_style_feat).
|
127 |
-
|
128 |
-
Returns:
|
129 |
-
Tensor: Modulated tensor after convolution.
|
130 |
-
"""
|
131 |
-
b, c, h, w = x.shape # c = c_in
|
132 |
-
# weight modulation
|
133 |
-
style = self.modulation(style).view(b, 1, c, 1, 1)
|
134 |
-
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
|
135 |
-
weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
|
136 |
-
|
137 |
-
if self.demodulate:
|
138 |
-
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
|
139 |
-
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
|
140 |
-
|
141 |
-
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
|
142 |
-
|
143 |
-
if self.sample_mode == 'upsample':
|
144 |
-
x = F.interpolate(x, scale_factor=2, mode=self.interpolation_mode, align_corners=self.align_corners)
|
145 |
-
elif self.sample_mode == 'downsample':
|
146 |
-
x = F.interpolate(x, scale_factor=0.5, mode=self.interpolation_mode, align_corners=self.align_corners)
|
147 |
-
|
148 |
-
b, c, h, w = x.shape
|
149 |
-
x = x.view(1, b * c, h, w)
|
150 |
-
# weight: (b*c_out, c_in, k, k), groups=b
|
151 |
-
out = F.conv2d(x, weight, padding=self.padding, groups=b)
|
152 |
-
out = out.view(b, self.out_channels, *out.shape[2:4])
|
153 |
-
|
154 |
-
return out
|
155 |
-
|
156 |
-
def __repr__(self):
|
157 |
-
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
|
158 |
-
f'out_channels={self.out_channels}, '
|
159 |
-
f'kernel_size={self.kernel_size}, '
|
160 |
-
f'demodulate={self.demodulate}, sample_mode={self.sample_mode})')
|
161 |
-
|
162 |
-
|
163 |
-
class StyleConv(nn.Module):
|
164 |
-
"""Style conv.
|
165 |
-
|
166 |
-
Args:
|
167 |
-
in_channels (int): Channel number of the input.
|
168 |
-
out_channels (int): Channel number of the output.
|
169 |
-
kernel_size (int): Size of the convolving kernel.
|
170 |
-
num_style_feat (int): Channel number of style features.
|
171 |
-
demodulate (bool): Whether demodulate in the conv layer. Default: True.
|
172 |
-
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
|
173 |
-
Default: None.
|
174 |
-
"""
|
175 |
-
|
176 |
-
def __init__(self,
|
177 |
-
in_channels,
|
178 |
-
out_channels,
|
179 |
-
kernel_size,
|
180 |
-
num_style_feat,
|
181 |
-
demodulate=True,
|
182 |
-
sample_mode=None,
|
183 |
-
interpolation_mode='bilinear'):
|
184 |
-
super(StyleConv, self).__init__()
|
185 |
-
self.modulated_conv = ModulatedConv2d(
|
186 |
-
in_channels,
|
187 |
-
out_channels,
|
188 |
-
kernel_size,
|
189 |
-
num_style_feat,
|
190 |
-
demodulate=demodulate,
|
191 |
-
sample_mode=sample_mode,
|
192 |
-
interpolation_mode=interpolation_mode)
|
193 |
-
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
|
194 |
-
self.activate = FusedLeakyReLU(out_channels)
|
195 |
-
|
196 |
-
def forward(self, x, style, noise=None):
|
197 |
-
# modulate
|
198 |
-
out = self.modulated_conv(x, style)
|
199 |
-
# noise injection
|
200 |
-
if noise is None:
|
201 |
-
b, _, h, w = out.shape
|
202 |
-
noise = out.new_empty(b, 1, h, w).normal_()
|
203 |
-
out = out + self.weight * noise
|
204 |
-
# activation (with bias)
|
205 |
-
out = self.activate(out)
|
206 |
-
return out
|
207 |
-
|
208 |
-
|
209 |
-
class ToRGB(nn.Module):
|
210 |
-
"""To RGB from features.
|
211 |
-
|
212 |
-
Args:
|
213 |
-
in_channels (int): Channel number of input.
|
214 |
-
num_style_feat (int): Channel number of style features.
|
215 |
-
upsample (bool): Whether to upsample. Default: True.
|
216 |
-
"""
|
217 |
-
|
218 |
-
def __init__(self, in_channels, num_style_feat, upsample=True, interpolation_mode='bilinear'):
|
219 |
-
super(ToRGB, self).__init__()
|
220 |
-
self.upsample = upsample
|
221 |
-
self.interpolation_mode = interpolation_mode
|
222 |
-
if self.interpolation_mode == 'nearest':
|
223 |
-
self.align_corners = None
|
224 |
-
else:
|
225 |
-
self.align_corners = False
|
226 |
-
self.modulated_conv = ModulatedConv2d(
|
227 |
-
in_channels,
|
228 |
-
3,
|
229 |
-
kernel_size=1,
|
230 |
-
num_style_feat=num_style_feat,
|
231 |
-
demodulate=False,
|
232 |
-
sample_mode=None,
|
233 |
-
interpolation_mode=interpolation_mode)
|
234 |
-
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
235 |
-
|
236 |
-
def forward(self, x, style, skip=None):
|
237 |
-
"""Forward function.
|
238 |
-
|
239 |
-
Args:
|
240 |
-
x (Tensor): Feature tensor with shape (b, c, h, w).
|
241 |
-
style (Tensor): Tensor with shape (b, num_style_feat).
|
242 |
-
skip (Tensor): Base/skip tensor. Default: None.
|
243 |
-
|
244 |
-
Returns:
|
245 |
-
Tensor: RGB images.
|
246 |
-
"""
|
247 |
-
out = self.modulated_conv(x, style)
|
248 |
-
out = out + self.bias
|
249 |
-
if skip is not None:
|
250 |
-
if self.upsample:
|
251 |
-
skip = F.interpolate(
|
252 |
-
skip, scale_factor=2, mode=self.interpolation_mode, align_corners=self.align_corners)
|
253 |
-
out = out + skip
|
254 |
-
return out
|
255 |
-
|
256 |
-
|
257 |
-
class ConstantInput(nn.Module):
|
258 |
-
"""Constant input.
|
259 |
-
|
260 |
-
Args:
|
261 |
-
num_channel (int): Channel number of constant input.
|
262 |
-
size (int): Spatial size of constant input.
|
263 |
-
"""
|
264 |
-
|
265 |
-
def __init__(self, num_channel, size):
|
266 |
-
super(ConstantInput, self).__init__()
|
267 |
-
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
|
268 |
-
|
269 |
-
def forward(self, batch):
|
270 |
-
out = self.weight.repeat(batch, 1, 1, 1)
|
271 |
-
return out
|
272 |
-
|
273 |
-
|
274 |
-
@ARCH_REGISTRY.register(suffix='basicsr')
|
275 |
-
class StyleGAN2GeneratorBilinear(nn.Module):
|
276 |
-
"""StyleGAN2 Generator.
|
277 |
-
|
278 |
-
Args:
|
279 |
-
out_size (int): The spatial size of outputs.
|
280 |
-
num_style_feat (int): Channel number of style features. Default: 512.
|
281 |
-
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
282 |
-
channel_multiplier (int): Channel multiplier for large networks of
|
283 |
-
StyleGAN2. Default: 2.
|
284 |
-
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
|
285 |
-
narrow (float): Narrow ratio for channels. Default: 1.0.
|
286 |
-
"""
|
287 |
-
|
288 |
-
def __init__(self,
|
289 |
-
out_size,
|
290 |
-
num_style_feat=512,
|
291 |
-
num_mlp=8,
|
292 |
-
channel_multiplier=2,
|
293 |
-
lr_mlp=0.01,
|
294 |
-
narrow=1,
|
295 |
-
interpolation_mode='bilinear'):
|
296 |
-
super(StyleGAN2GeneratorBilinear, self).__init__()
|
297 |
-
# Style MLP layers
|
298 |
-
self.num_style_feat = num_style_feat
|
299 |
-
style_mlp_layers = [NormStyleCode()]
|
300 |
-
for i in range(num_mlp):
|
301 |
-
style_mlp_layers.append(
|
302 |
-
EqualLinear(
|
303 |
-
num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp,
|
304 |
-
activation='fused_lrelu'))
|
305 |
-
self.style_mlp = nn.Sequential(*style_mlp_layers)
|
306 |
-
|
307 |
-
channels = {
|
308 |
-
'4': int(512 * narrow),
|
309 |
-
'8': int(512 * narrow),
|
310 |
-
'16': int(512 * narrow),
|
311 |
-
'32': int(512 * narrow),
|
312 |
-
'64': int(256 * channel_multiplier * narrow),
|
313 |
-
'128': int(128 * channel_multiplier * narrow),
|
314 |
-
'256': int(64 * channel_multiplier * narrow),
|
315 |
-
'512': int(32 * channel_multiplier * narrow),
|
316 |
-
'1024': int(16 * channel_multiplier * narrow)
|
317 |
-
}
|
318 |
-
self.channels = channels
|
319 |
-
|
320 |
-
self.constant_input = ConstantInput(channels['4'], size=4)
|
321 |
-
self.style_conv1 = StyleConv(
|
322 |
-
channels['4'],
|
323 |
-
channels['4'],
|
324 |
-
kernel_size=3,
|
325 |
-
num_style_feat=num_style_feat,
|
326 |
-
demodulate=True,
|
327 |
-
sample_mode=None,
|
328 |
-
interpolation_mode=interpolation_mode)
|
329 |
-
self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, interpolation_mode=interpolation_mode)
|
330 |
-
|
331 |
-
self.log_size = int(math.log(out_size, 2))
|
332 |
-
self.num_layers = (self.log_size - 2) * 2 + 1
|
333 |
-
self.num_latent = self.log_size * 2 - 2
|
334 |
-
|
335 |
-
self.style_convs = nn.ModuleList()
|
336 |
-
self.to_rgbs = nn.ModuleList()
|
337 |
-
self.noises = nn.Module()
|
338 |
-
|
339 |
-
in_channels = channels['4']
|
340 |
-
# noise
|
341 |
-
for layer_idx in range(self.num_layers):
|
342 |
-
resolution = 2**((layer_idx + 5) // 2)
|
343 |
-
shape = [1, 1, resolution, resolution]
|
344 |
-
self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
|
345 |
-
# style convs and to_rgbs
|
346 |
-
for i in range(3, self.log_size + 1):
|
347 |
-
out_channels = channels[f'{2**i}']
|
348 |
-
self.style_convs.append(
|
349 |
-
StyleConv(
|
350 |
-
in_channels,
|
351 |
-
out_channels,
|
352 |
-
kernel_size=3,
|
353 |
-
num_style_feat=num_style_feat,
|
354 |
-
demodulate=True,
|
355 |
-
sample_mode='upsample',
|
356 |
-
interpolation_mode=interpolation_mode))
|
357 |
-
self.style_convs.append(
|
358 |
-
StyleConv(
|
359 |
-
out_channels,
|
360 |
-
out_channels,
|
361 |
-
kernel_size=3,
|
362 |
-
num_style_feat=num_style_feat,
|
363 |
-
demodulate=True,
|
364 |
-
sample_mode=None,
|
365 |
-
interpolation_mode=interpolation_mode))
|
366 |
-
self.to_rgbs.append(
|
367 |
-
ToRGB(out_channels, num_style_feat, upsample=True, interpolation_mode=interpolation_mode))
|
368 |
-
in_channels = out_channels
|
369 |
-
|
370 |
-
def make_noise(self):
|
371 |
-
"""Make noise for noise injection."""
|
372 |
-
device = self.constant_input.weight.device
|
373 |
-
noises = [torch.randn(1, 1, 4, 4, device=device)]
|
374 |
-
|
375 |
-
for i in range(3, self.log_size + 1):
|
376 |
-
for _ in range(2):
|
377 |
-
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
|
378 |
-
|
379 |
-
return noises
|
380 |
-
|
381 |
-
def get_latent(self, x):
|
382 |
-
return self.style_mlp(x)
|
383 |
-
|
384 |
-
def mean_latent(self, num_latent):
|
385 |
-
latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
|
386 |
-
latent = self.style_mlp(latent_in).mean(0, keepdim=True)
|
387 |
-
return latent
|
388 |
-
|
389 |
-
def forward(self,
|
390 |
-
styles,
|
391 |
-
input_is_latent=False,
|
392 |
-
noise=None,
|
393 |
-
randomize_noise=True,
|
394 |
-
truncation=1,
|
395 |
-
truncation_latent=None,
|
396 |
-
inject_index=None,
|
397 |
-
return_latents=False):
|
398 |
-
"""Forward function for StyleGAN2Generator.
|
399 |
-
|
400 |
-
Args:
|
401 |
-
styles (list[Tensor]): Sample codes of styles.
|
402 |
-
input_is_latent (bool): Whether input is latent style.
|
403 |
-
Default: False.
|
404 |
-
noise (Tensor | None): Input noise or None. Default: None.
|
405 |
-
randomize_noise (bool): Randomize noise, used when 'noise' is
|
406 |
-
False. Default: True.
|
407 |
-
truncation (float): TODO. Default: 1.
|
408 |
-
truncation_latent (Tensor | None): TODO. Default: None.
|
409 |
-
inject_index (int | None): The injection index for mixing noise.
|
410 |
-
Default: None.
|
411 |
-
return_latents (bool): Whether to return style latents.
|
412 |
-
Default: False.
|
413 |
-
"""
|
414 |
-
# style codes -> latents with Style MLP layer
|
415 |
-
if not input_is_latent:
|
416 |
-
styles = [self.style_mlp(s) for s in styles]
|
417 |
-
# noises
|
418 |
-
if noise is None:
|
419 |
-
if randomize_noise:
|
420 |
-
noise = [None] * self.num_layers # for each style conv layer
|
421 |
-
else: # use the stored noise
|
422 |
-
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
|
423 |
-
# style truncation
|
424 |
-
if truncation < 1:
|
425 |
-
style_truncation = []
|
426 |
-
for style in styles:
|
427 |
-
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
|
428 |
-
styles = style_truncation
|
429 |
-
# get style latent with injection
|
430 |
-
if len(styles) == 1:
|
431 |
-
inject_index = self.num_latent
|
432 |
-
|
433 |
-
if styles[0].ndim < 3:
|
434 |
-
# repeat latent code for all the layers
|
435 |
-
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
436 |
-
else: # used for encoder with different latent code for each layer
|
437 |
-
latent = styles[0]
|
438 |
-
elif len(styles) == 2: # mixing noises
|
439 |
-
if inject_index is None:
|
440 |
-
inject_index = random.randint(1, self.num_latent - 1)
|
441 |
-
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
442 |
-
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
|
443 |
-
latent = torch.cat([latent1, latent2], 1)
|
444 |
-
|
445 |
-
# main generation
|
446 |
-
out = self.constant_input(latent.shape[0])
|
447 |
-
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
|
448 |
-
skip = self.to_rgb1(out, latent[:, 1])
|
449 |
-
|
450 |
-
i = 1
|
451 |
-
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
|
452 |
-
noise[2::2], self.to_rgbs):
|
453 |
-
out = conv1(out, latent[:, i], noise=noise1)
|
454 |
-
out = conv2(out, latent[:, i + 1], noise=noise2)
|
455 |
-
skip = to_rgb(out, latent[:, i + 2], skip)
|
456 |
-
i += 2
|
457 |
-
|
458 |
-
image = skip
|
459 |
-
|
460 |
-
if return_latents:
|
461 |
-
return image, latent
|
462 |
-
else:
|
463 |
-
return image, None
|
464 |
-
|
465 |
-
|
466 |
-
class ScaledLeakyReLU(nn.Module):
|
467 |
-
"""Scaled LeakyReLU.
|
468 |
-
|
469 |
-
Args:
|
470 |
-
negative_slope (float): Negative slope. Default: 0.2.
|
471 |
-
"""
|
472 |
-
|
473 |
-
def __init__(self, negative_slope=0.2):
|
474 |
-
super(ScaledLeakyReLU, self).__init__()
|
475 |
-
self.negative_slope = negative_slope
|
476 |
-
|
477 |
-
def forward(self, x):
|
478 |
-
out = F.leaky_relu(x, negative_slope=self.negative_slope)
|
479 |
-
return out * math.sqrt(2)
|
480 |
-
|
481 |
-
|
482 |
-
class EqualConv2d(nn.Module):
|
483 |
-
"""Equalized Linear as StyleGAN2.
|
484 |
-
|
485 |
-
Args:
|
486 |
-
in_channels (int): Channel number of the input.
|
487 |
-
out_channels (int): Channel number of the output.
|
488 |
-
kernel_size (int): Size of the convolving kernel.
|
489 |
-
stride (int): Stride of the convolution. Default: 1
|
490 |
-
padding (int): Zero-padding added to both sides of the input.
|
491 |
-
Default: 0.
|
492 |
-
bias (bool): If ``True``, adds a learnable bias to the output.
|
493 |
-
Default: ``True``.
|
494 |
-
bias_init_val (float): Bias initialized value. Default: 0.
|
495 |
-
"""
|
496 |
-
|
497 |
-
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0):
|
498 |
-
super(EqualConv2d, self).__init__()
|
499 |
-
self.in_channels = in_channels
|
500 |
-
self.out_channels = out_channels
|
501 |
-
self.kernel_size = kernel_size
|
502 |
-
self.stride = stride
|
503 |
-
self.padding = padding
|
504 |
-
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
|
505 |
-
|
506 |
-
self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
|
507 |
-
if bias:
|
508 |
-
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
|
509 |
-
else:
|
510 |
-
self.register_parameter('bias', None)
|
511 |
-
|
512 |
-
def forward(self, x):
|
513 |
-
out = F.conv2d(
|
514 |
-
x,
|
515 |
-
self.weight * self.scale,
|
516 |
-
bias=self.bias,
|
517 |
-
stride=self.stride,
|
518 |
-
padding=self.padding,
|
519 |
-
)
|
520 |
-
|
521 |
-
return out
|
522 |
-
|
523 |
-
def __repr__(self):
|
524 |
-
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
|
525 |
-
f'out_channels={self.out_channels}, '
|
526 |
-
f'kernel_size={self.kernel_size},'
|
527 |
-
f' stride={self.stride}, padding={self.padding}, '
|
528 |
-
f'bias={self.bias is not None})')
|
529 |
-
|
530 |
-
|
531 |
-
class ConvLayer(nn.Sequential):
|
532 |
-
"""Conv Layer used in StyleGAN2 Discriminator.
|
533 |
-
|
534 |
-
Args:
|
535 |
-
in_channels (int): Channel number of the input.
|
536 |
-
out_channels (int): Channel number of the output.
|
537 |
-
kernel_size (int): Kernel size.
|
538 |
-
downsample (bool): Whether downsample by a factor of 2.
|
539 |
-
Default: False.
|
540 |
-
bias (bool): Whether with bias. Default: True.
|
541 |
-
activate (bool): Whether use activateion. Default: True.
|
542 |
-
"""
|
543 |
-
|
544 |
-
def __init__(self,
|
545 |
-
in_channels,
|
546 |
-
out_channels,
|
547 |
-
kernel_size,
|
548 |
-
downsample=False,
|
549 |
-
bias=True,
|
550 |
-
activate=True,
|
551 |
-
interpolation_mode='bilinear'):
|
552 |
-
layers = []
|
553 |
-
self.interpolation_mode = interpolation_mode
|
554 |
-
# downsample
|
555 |
-
if downsample:
|
556 |
-
if self.interpolation_mode == 'nearest':
|
557 |
-
self.align_corners = None
|
558 |
-
else:
|
559 |
-
self.align_corners = False
|
560 |
-
|
561 |
-
layers.append(
|
562 |
-
torch.nn.Upsample(scale_factor=0.5, mode=interpolation_mode, align_corners=self.align_corners))
|
563 |
-
stride = 1
|
564 |
-
self.padding = kernel_size // 2
|
565 |
-
# conv
|
566 |
-
layers.append(
|
567 |
-
EqualConv2d(
|
568 |
-
in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias
|
569 |
-
and not activate))
|
570 |
-
# activation
|
571 |
-
if activate:
|
572 |
-
if bias:
|
573 |
-
layers.append(FusedLeakyReLU(out_channels))
|
574 |
-
else:
|
575 |
-
layers.append(ScaledLeakyReLU(0.2))
|
576 |
-
|
577 |
-
super(ConvLayer, self).__init__(*layers)
|
578 |
-
|
579 |
-
|
580 |
-
class ResBlock(nn.Module):
|
581 |
-
"""Residual block used in StyleGAN2 Discriminator.
|
582 |
-
|
583 |
-
Args:
|
584 |
-
in_channels (int): Channel number of the input.
|
585 |
-
out_channels (int): Channel number of the output.
|
586 |
-
"""
|
587 |
-
|
588 |
-
def __init__(self, in_channels, out_channels, interpolation_mode='bilinear'):
|
589 |
-
super(ResBlock, self).__init__()
|
590 |
-
|
591 |
-
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
|
592 |
-
self.conv2 = ConvLayer(
|
593 |
-
in_channels,
|
594 |
-
out_channels,
|
595 |
-
3,
|
596 |
-
downsample=True,
|
597 |
-
interpolation_mode=interpolation_mode,
|
598 |
-
bias=True,
|
599 |
-
activate=True)
|
600 |
-
self.skip = ConvLayer(
|
601 |
-
in_channels,
|
602 |
-
out_channels,
|
603 |
-
1,
|
604 |
-
downsample=True,
|
605 |
-
interpolation_mode=interpolation_mode,
|
606 |
-
bias=False,
|
607 |
-
activate=False)
|
608 |
-
|
609 |
-
def forward(self, x):
|
610 |
-
out = self.conv1(x)
|
611 |
-
out = self.conv2(out)
|
612 |
-
skip = self.skip(x)
|
613 |
-
out = (out + skip) / math.sqrt(2)
|
614 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/swinir_arch.py
DELETED
@@ -1,956 +0,0 @@
|
|
1 |
-
# Modified from https://github.com/JingyunLiang/SwinIR
|
2 |
-
# SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257
|
3 |
-
# Originally Written by Ze Liu, Modified by Jingyun Liang.
|
4 |
-
|
5 |
-
import math
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
import torch.utils.checkpoint as checkpoint
|
9 |
-
|
10 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
11 |
-
from .arch_util import to_2tuple, trunc_normal_
|
12 |
-
|
13 |
-
|
14 |
-
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
15 |
-
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
16 |
-
|
17 |
-
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
|
18 |
-
"""
|
19 |
-
if drop_prob == 0. or not training:
|
20 |
-
return x
|
21 |
-
keep_prob = 1 - drop_prob
|
22 |
-
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
23 |
-
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
24 |
-
random_tensor.floor_() # binarize
|
25 |
-
output = x.div(keep_prob) * random_tensor
|
26 |
-
return output
|
27 |
-
|
28 |
-
|
29 |
-
class DropPath(nn.Module):
|
30 |
-
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
31 |
-
|
32 |
-
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
|
33 |
-
"""
|
34 |
-
|
35 |
-
def __init__(self, drop_prob=None):
|
36 |
-
super(DropPath, self).__init__()
|
37 |
-
self.drop_prob = drop_prob
|
38 |
-
|
39 |
-
def forward(self, x):
|
40 |
-
return drop_path(x, self.drop_prob, self.training)
|
41 |
-
|
42 |
-
|
43 |
-
class Mlp(nn.Module):
|
44 |
-
|
45 |
-
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
46 |
-
super().__init__()
|
47 |
-
out_features = out_features or in_features
|
48 |
-
hidden_features = hidden_features or in_features
|
49 |
-
self.fc1 = nn.Linear(in_features, hidden_features)
|
50 |
-
self.act = act_layer()
|
51 |
-
self.fc2 = nn.Linear(hidden_features, out_features)
|
52 |
-
self.drop = nn.Dropout(drop)
|
53 |
-
|
54 |
-
def forward(self, x):
|
55 |
-
x = self.fc1(x)
|
56 |
-
x = self.act(x)
|
57 |
-
x = self.drop(x)
|
58 |
-
x = self.fc2(x)
|
59 |
-
x = self.drop(x)
|
60 |
-
return x
|
61 |
-
|
62 |
-
|
63 |
-
def window_partition(x, window_size):
|
64 |
-
"""
|
65 |
-
Args:
|
66 |
-
x: (b, h, w, c)
|
67 |
-
window_size (int): window size
|
68 |
-
|
69 |
-
Returns:
|
70 |
-
windows: (num_windows*b, window_size, window_size, c)
|
71 |
-
"""
|
72 |
-
b, h, w, c = x.shape
|
73 |
-
x = x.view(b, h // window_size, window_size, w // window_size, window_size, c)
|
74 |
-
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)
|
75 |
-
return windows
|
76 |
-
|
77 |
-
|
78 |
-
def window_reverse(windows, window_size, h, w):
|
79 |
-
"""
|
80 |
-
Args:
|
81 |
-
windows: (num_windows*b, window_size, window_size, c)
|
82 |
-
window_size (int): Window size
|
83 |
-
h (int): Height of image
|
84 |
-
w (int): Width of image
|
85 |
-
|
86 |
-
Returns:
|
87 |
-
x: (b, h, w, c)
|
88 |
-
"""
|
89 |
-
b = int(windows.shape[0] / (h * w / window_size / window_size))
|
90 |
-
x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)
|
91 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
|
92 |
-
return x
|
93 |
-
|
94 |
-
|
95 |
-
class WindowAttention(nn.Module):
|
96 |
-
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
97 |
-
It supports both of shifted and non-shifted window.
|
98 |
-
|
99 |
-
Args:
|
100 |
-
dim (int): Number of input channels.
|
101 |
-
window_size (tuple[int]): The height and width of the window.
|
102 |
-
num_heads (int): Number of attention heads.
|
103 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
104 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
105 |
-
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
106 |
-
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
107 |
-
"""
|
108 |
-
|
109 |
-
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
110 |
-
|
111 |
-
super().__init__()
|
112 |
-
self.dim = dim
|
113 |
-
self.window_size = window_size # Wh, Ww
|
114 |
-
self.num_heads = num_heads
|
115 |
-
head_dim = dim // num_heads
|
116 |
-
self.scale = qk_scale or head_dim**-0.5
|
117 |
-
|
118 |
-
# define a parameter table of relative position bias
|
119 |
-
self.relative_position_bias_table = nn.Parameter(
|
120 |
-
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
121 |
-
|
122 |
-
# get pair-wise relative position index for each token inside the window
|
123 |
-
coords_h = torch.arange(self.window_size[0])
|
124 |
-
coords_w = torch.arange(self.window_size[1])
|
125 |
-
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
126 |
-
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
127 |
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
128 |
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
129 |
-
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
130 |
-
relative_coords[:, :, 1] += self.window_size[1] - 1
|
131 |
-
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
132 |
-
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
133 |
-
self.register_buffer('relative_position_index', relative_position_index)
|
134 |
-
|
135 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
136 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
137 |
-
self.proj = nn.Linear(dim, dim)
|
138 |
-
|
139 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
140 |
-
|
141 |
-
trunc_normal_(self.relative_position_bias_table, std=.02)
|
142 |
-
self.softmax = nn.Softmax(dim=-1)
|
143 |
-
|
144 |
-
def forward(self, x, mask=None):
|
145 |
-
"""
|
146 |
-
Args:
|
147 |
-
x: input features with shape of (num_windows*b, n, c)
|
148 |
-
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
149 |
-
"""
|
150 |
-
b_, n, c = x.shape
|
151 |
-
qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
|
152 |
-
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
153 |
-
|
154 |
-
q = q * self.scale
|
155 |
-
attn = (q @ k.transpose(-2, -1))
|
156 |
-
|
157 |
-
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
158 |
-
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
159 |
-
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
160 |
-
attn = attn + relative_position_bias.unsqueeze(0)
|
161 |
-
|
162 |
-
if mask is not None:
|
163 |
-
nw = mask.shape[0]
|
164 |
-
attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
|
165 |
-
attn = attn.view(-1, self.num_heads, n, n)
|
166 |
-
attn = self.softmax(attn)
|
167 |
-
else:
|
168 |
-
attn = self.softmax(attn)
|
169 |
-
|
170 |
-
attn = self.attn_drop(attn)
|
171 |
-
|
172 |
-
x = (attn @ v).transpose(1, 2).reshape(b_, n, c)
|
173 |
-
x = self.proj(x)
|
174 |
-
x = self.proj_drop(x)
|
175 |
-
return x
|
176 |
-
|
177 |
-
def extra_repr(self) -> str:
|
178 |
-
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
179 |
-
|
180 |
-
def flops(self, n):
|
181 |
-
# calculate flops for 1 window with token length of n
|
182 |
-
flops = 0
|
183 |
-
# qkv = self.qkv(x)
|
184 |
-
flops += n * self.dim * 3 * self.dim
|
185 |
-
# attn = (q @ k.transpose(-2, -1))
|
186 |
-
flops += self.num_heads * n * (self.dim // self.num_heads) * n
|
187 |
-
# x = (attn @ v)
|
188 |
-
flops += self.num_heads * n * n * (self.dim // self.num_heads)
|
189 |
-
# x = self.proj(x)
|
190 |
-
flops += n * self.dim * self.dim
|
191 |
-
return flops
|
192 |
-
|
193 |
-
|
194 |
-
class SwinTransformerBlock(nn.Module):
|
195 |
-
r""" Swin Transformer Block.
|
196 |
-
|
197 |
-
Args:
|
198 |
-
dim (int): Number of input channels.
|
199 |
-
input_resolution (tuple[int]): Input resolution.
|
200 |
-
num_heads (int): Number of attention heads.
|
201 |
-
window_size (int): Window size.
|
202 |
-
shift_size (int): Shift size for SW-MSA.
|
203 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
204 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
205 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
206 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
207 |
-
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
208 |
-
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
209 |
-
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
210 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
211 |
-
"""
|
212 |
-
|
213 |
-
def __init__(self,
|
214 |
-
dim,
|
215 |
-
input_resolution,
|
216 |
-
num_heads,
|
217 |
-
window_size=7,
|
218 |
-
shift_size=0,
|
219 |
-
mlp_ratio=4.,
|
220 |
-
qkv_bias=True,
|
221 |
-
qk_scale=None,
|
222 |
-
drop=0.,
|
223 |
-
attn_drop=0.,
|
224 |
-
drop_path=0.,
|
225 |
-
act_layer=nn.GELU,
|
226 |
-
norm_layer=nn.LayerNorm):
|
227 |
-
super().__init__()
|
228 |
-
self.dim = dim
|
229 |
-
self.input_resolution = input_resolution
|
230 |
-
self.num_heads = num_heads
|
231 |
-
self.window_size = window_size
|
232 |
-
self.shift_size = shift_size
|
233 |
-
self.mlp_ratio = mlp_ratio
|
234 |
-
if min(self.input_resolution) <= self.window_size:
|
235 |
-
# if window size is larger than input resolution, we don't partition windows
|
236 |
-
self.shift_size = 0
|
237 |
-
self.window_size = min(self.input_resolution)
|
238 |
-
assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size'
|
239 |
-
|
240 |
-
self.norm1 = norm_layer(dim)
|
241 |
-
self.attn = WindowAttention(
|
242 |
-
dim,
|
243 |
-
window_size=to_2tuple(self.window_size),
|
244 |
-
num_heads=num_heads,
|
245 |
-
qkv_bias=qkv_bias,
|
246 |
-
qk_scale=qk_scale,
|
247 |
-
attn_drop=attn_drop,
|
248 |
-
proj_drop=drop)
|
249 |
-
|
250 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
251 |
-
self.norm2 = norm_layer(dim)
|
252 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
253 |
-
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
254 |
-
|
255 |
-
if self.shift_size > 0:
|
256 |
-
attn_mask = self.calculate_mask(self.input_resolution)
|
257 |
-
else:
|
258 |
-
attn_mask = None
|
259 |
-
|
260 |
-
self.register_buffer('attn_mask', attn_mask)
|
261 |
-
|
262 |
-
def calculate_mask(self, x_size):
|
263 |
-
# calculate attention mask for SW-MSA
|
264 |
-
h, w = x_size
|
265 |
-
img_mask = torch.zeros((1, h, w, 1)) # 1 h w 1
|
266 |
-
h_slices = (slice(0, -self.window_size), slice(-self.window_size,
|
267 |
-
-self.shift_size), slice(-self.shift_size, None))
|
268 |
-
w_slices = (slice(0, -self.window_size), slice(-self.window_size,
|
269 |
-
-self.shift_size), slice(-self.shift_size, None))
|
270 |
-
cnt = 0
|
271 |
-
for h in h_slices:
|
272 |
-
for w in w_slices:
|
273 |
-
img_mask[:, h, w, :] = cnt
|
274 |
-
cnt += 1
|
275 |
-
|
276 |
-
mask_windows = window_partition(img_mask, self.window_size) # nw, window_size, window_size, 1
|
277 |
-
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
278 |
-
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
279 |
-
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
280 |
-
|
281 |
-
return attn_mask
|
282 |
-
|
283 |
-
def forward(self, x, x_size):
|
284 |
-
h, w = x_size
|
285 |
-
b, _, c = x.shape
|
286 |
-
# assert seq_len == h * w, "input feature has wrong size"
|
287 |
-
|
288 |
-
shortcut = x
|
289 |
-
x = self.norm1(x)
|
290 |
-
x = x.view(b, h, w, c)
|
291 |
-
|
292 |
-
# cyclic shift
|
293 |
-
if self.shift_size > 0:
|
294 |
-
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
295 |
-
else:
|
296 |
-
shifted_x = x
|
297 |
-
|
298 |
-
# partition windows
|
299 |
-
x_windows = window_partition(shifted_x, self.window_size) # nw*b, window_size, window_size, c
|
300 |
-
x_windows = x_windows.view(-1, self.window_size * self.window_size, c) # nw*b, window_size*window_size, c
|
301 |
-
|
302 |
-
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
|
303 |
-
if self.input_resolution == x_size:
|
304 |
-
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nw*b, window_size*window_size, c
|
305 |
-
else:
|
306 |
-
attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
|
307 |
-
|
308 |
-
# merge windows
|
309 |
-
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)
|
310 |
-
shifted_x = window_reverse(attn_windows, self.window_size, h, w) # b h' w' c
|
311 |
-
|
312 |
-
# reverse cyclic shift
|
313 |
-
if self.shift_size > 0:
|
314 |
-
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
315 |
-
else:
|
316 |
-
x = shifted_x
|
317 |
-
x = x.view(b, h * w, c)
|
318 |
-
|
319 |
-
# FFN
|
320 |
-
x = shortcut + self.drop_path(x)
|
321 |
-
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
322 |
-
|
323 |
-
return x
|
324 |
-
|
325 |
-
def extra_repr(self) -> str:
|
326 |
-
return (f'dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, '
|
327 |
-
f'window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}')
|
328 |
-
|
329 |
-
def flops(self):
|
330 |
-
flops = 0
|
331 |
-
h, w = self.input_resolution
|
332 |
-
# norm1
|
333 |
-
flops += self.dim * h * w
|
334 |
-
# W-MSA/SW-MSA
|
335 |
-
nw = h * w / self.window_size / self.window_size
|
336 |
-
flops += nw * self.attn.flops(self.window_size * self.window_size)
|
337 |
-
# mlp
|
338 |
-
flops += 2 * h * w * self.dim * self.dim * self.mlp_ratio
|
339 |
-
# norm2
|
340 |
-
flops += self.dim * h * w
|
341 |
-
return flops
|
342 |
-
|
343 |
-
|
344 |
-
class PatchMerging(nn.Module):
|
345 |
-
r""" Patch Merging Layer.
|
346 |
-
|
347 |
-
Args:
|
348 |
-
input_resolution (tuple[int]): Resolution of input feature.
|
349 |
-
dim (int): Number of input channels.
|
350 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
351 |
-
"""
|
352 |
-
|
353 |
-
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
354 |
-
super().__init__()
|
355 |
-
self.input_resolution = input_resolution
|
356 |
-
self.dim = dim
|
357 |
-
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
358 |
-
self.norm = norm_layer(4 * dim)
|
359 |
-
|
360 |
-
def forward(self, x):
|
361 |
-
"""
|
362 |
-
x: b, h*w, c
|
363 |
-
"""
|
364 |
-
h, w = self.input_resolution
|
365 |
-
b, seq_len, c = x.shape
|
366 |
-
assert seq_len == h * w, 'input feature has wrong size'
|
367 |
-
assert h % 2 == 0 and w % 2 == 0, f'x size ({h}*{w}) are not even.'
|
368 |
-
|
369 |
-
x = x.view(b, h, w, c)
|
370 |
-
|
371 |
-
x0 = x[:, 0::2, 0::2, :] # b h/2 w/2 c
|
372 |
-
x1 = x[:, 1::2, 0::2, :] # b h/2 w/2 c
|
373 |
-
x2 = x[:, 0::2, 1::2, :] # b h/2 w/2 c
|
374 |
-
x3 = x[:, 1::2, 1::2, :] # b h/2 w/2 c
|
375 |
-
x = torch.cat([x0, x1, x2, x3], -1) # b h/2 w/2 4*c
|
376 |
-
x = x.view(b, -1, 4 * c) # b h/2*w/2 4*c
|
377 |
-
|
378 |
-
x = self.norm(x)
|
379 |
-
x = self.reduction(x)
|
380 |
-
|
381 |
-
return x
|
382 |
-
|
383 |
-
def extra_repr(self) -> str:
|
384 |
-
return f'input_resolution={self.input_resolution}, dim={self.dim}'
|
385 |
-
|
386 |
-
def flops(self):
|
387 |
-
h, w = self.input_resolution
|
388 |
-
flops = h * w * self.dim
|
389 |
-
flops += (h // 2) * (w // 2) * 4 * self.dim * 2 * self.dim
|
390 |
-
return flops
|
391 |
-
|
392 |
-
|
393 |
-
class BasicLayer(nn.Module):
|
394 |
-
""" A basic Swin Transformer layer for one stage.
|
395 |
-
|
396 |
-
Args:
|
397 |
-
dim (int): Number of input channels.
|
398 |
-
input_resolution (tuple[int]): Input resolution.
|
399 |
-
depth (int): Number of blocks.
|
400 |
-
num_heads (int): Number of attention heads.
|
401 |
-
window_size (int): Local window size.
|
402 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
403 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
404 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
405 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
406 |
-
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
407 |
-
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
408 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
409 |
-
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
410 |
-
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
411 |
-
"""
|
412 |
-
|
413 |
-
def __init__(self,
|
414 |
-
dim,
|
415 |
-
input_resolution,
|
416 |
-
depth,
|
417 |
-
num_heads,
|
418 |
-
window_size,
|
419 |
-
mlp_ratio=4.,
|
420 |
-
qkv_bias=True,
|
421 |
-
qk_scale=None,
|
422 |
-
drop=0.,
|
423 |
-
attn_drop=0.,
|
424 |
-
drop_path=0.,
|
425 |
-
norm_layer=nn.LayerNorm,
|
426 |
-
downsample=None,
|
427 |
-
use_checkpoint=False):
|
428 |
-
|
429 |
-
super().__init__()
|
430 |
-
self.dim = dim
|
431 |
-
self.input_resolution = input_resolution
|
432 |
-
self.depth = depth
|
433 |
-
self.use_checkpoint = use_checkpoint
|
434 |
-
|
435 |
-
# build blocks
|
436 |
-
self.blocks = nn.ModuleList([
|
437 |
-
SwinTransformerBlock(
|
438 |
-
dim=dim,
|
439 |
-
input_resolution=input_resolution,
|
440 |
-
num_heads=num_heads,
|
441 |
-
window_size=window_size,
|
442 |
-
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
443 |
-
mlp_ratio=mlp_ratio,
|
444 |
-
qkv_bias=qkv_bias,
|
445 |
-
qk_scale=qk_scale,
|
446 |
-
drop=drop,
|
447 |
-
attn_drop=attn_drop,
|
448 |
-
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
449 |
-
norm_layer=norm_layer) for i in range(depth)
|
450 |
-
])
|
451 |
-
|
452 |
-
# patch merging layer
|
453 |
-
if downsample is not None:
|
454 |
-
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
455 |
-
else:
|
456 |
-
self.downsample = None
|
457 |
-
|
458 |
-
def forward(self, x, x_size):
|
459 |
-
for blk in self.blocks:
|
460 |
-
if self.use_checkpoint:
|
461 |
-
x = checkpoint.checkpoint(blk, x)
|
462 |
-
else:
|
463 |
-
x = blk(x, x_size)
|
464 |
-
if self.downsample is not None:
|
465 |
-
x = self.downsample(x)
|
466 |
-
return x
|
467 |
-
|
468 |
-
def extra_repr(self) -> str:
|
469 |
-
return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}'
|
470 |
-
|
471 |
-
def flops(self):
|
472 |
-
flops = 0
|
473 |
-
for blk in self.blocks:
|
474 |
-
flops += blk.flops()
|
475 |
-
if self.downsample is not None:
|
476 |
-
flops += self.downsample.flops()
|
477 |
-
return flops
|
478 |
-
|
479 |
-
|
480 |
-
class RSTB(nn.Module):
|
481 |
-
"""Residual Swin Transformer Block (RSTB).
|
482 |
-
|
483 |
-
Args:
|
484 |
-
dim (int): Number of input channels.
|
485 |
-
input_resolution (tuple[int]): Input resolution.
|
486 |
-
depth (int): Number of blocks.
|
487 |
-
num_heads (int): Number of attention heads.
|
488 |
-
window_size (int): Local window size.
|
489 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
490 |
-
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
491 |
-
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
492 |
-
drop (float, optional): Dropout rate. Default: 0.0
|
493 |
-
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
494 |
-
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
495 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
496 |
-
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
497 |
-
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
498 |
-
img_size: Input image size.
|
499 |
-
patch_size: Patch size.
|
500 |
-
resi_connection: The convolutional block before residual connection.
|
501 |
-
"""
|
502 |
-
|
503 |
-
def __init__(self,
|
504 |
-
dim,
|
505 |
-
input_resolution,
|
506 |
-
depth,
|
507 |
-
num_heads,
|
508 |
-
window_size,
|
509 |
-
mlp_ratio=4.,
|
510 |
-
qkv_bias=True,
|
511 |
-
qk_scale=None,
|
512 |
-
drop=0.,
|
513 |
-
attn_drop=0.,
|
514 |
-
drop_path=0.,
|
515 |
-
norm_layer=nn.LayerNorm,
|
516 |
-
downsample=None,
|
517 |
-
use_checkpoint=False,
|
518 |
-
img_size=224,
|
519 |
-
patch_size=4,
|
520 |
-
resi_connection='1conv'):
|
521 |
-
super(RSTB, self).__init__()
|
522 |
-
|
523 |
-
self.dim = dim
|
524 |
-
self.input_resolution = input_resolution
|
525 |
-
|
526 |
-
self.residual_group = BasicLayer(
|
527 |
-
dim=dim,
|
528 |
-
input_resolution=input_resolution,
|
529 |
-
depth=depth,
|
530 |
-
num_heads=num_heads,
|
531 |
-
window_size=window_size,
|
532 |
-
mlp_ratio=mlp_ratio,
|
533 |
-
qkv_bias=qkv_bias,
|
534 |
-
qk_scale=qk_scale,
|
535 |
-
drop=drop,
|
536 |
-
attn_drop=attn_drop,
|
537 |
-
drop_path=drop_path,
|
538 |
-
norm_layer=norm_layer,
|
539 |
-
downsample=downsample,
|
540 |
-
use_checkpoint=use_checkpoint)
|
541 |
-
|
542 |
-
if resi_connection == '1conv':
|
543 |
-
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
544 |
-
elif resi_connection == '3conv':
|
545 |
-
# to save parameters and memory
|
546 |
-
self.conv = nn.Sequential(
|
547 |
-
nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
548 |
-
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
549 |
-
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
550 |
-
|
551 |
-
self.patch_embed = PatchEmbed(
|
552 |
-
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
|
553 |
-
|
554 |
-
self.patch_unembed = PatchUnEmbed(
|
555 |
-
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
|
556 |
-
|
557 |
-
def forward(self, x, x_size):
|
558 |
-
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
559 |
-
|
560 |
-
def flops(self):
|
561 |
-
flops = 0
|
562 |
-
flops += self.residual_group.flops()
|
563 |
-
h, w = self.input_resolution
|
564 |
-
flops += h * w * self.dim * self.dim * 9
|
565 |
-
flops += self.patch_embed.flops()
|
566 |
-
flops += self.patch_unembed.flops()
|
567 |
-
|
568 |
-
return flops
|
569 |
-
|
570 |
-
|
571 |
-
class PatchEmbed(nn.Module):
|
572 |
-
r""" Image to Patch Embedding
|
573 |
-
|
574 |
-
Args:
|
575 |
-
img_size (int): Image size. Default: 224.
|
576 |
-
patch_size (int): Patch token size. Default: 4.
|
577 |
-
in_chans (int): Number of input image channels. Default: 3.
|
578 |
-
embed_dim (int): Number of linear projection output channels. Default: 96.
|
579 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
580 |
-
"""
|
581 |
-
|
582 |
-
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
583 |
-
super().__init__()
|
584 |
-
img_size = to_2tuple(img_size)
|
585 |
-
patch_size = to_2tuple(patch_size)
|
586 |
-
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
587 |
-
self.img_size = img_size
|
588 |
-
self.patch_size = patch_size
|
589 |
-
self.patches_resolution = patches_resolution
|
590 |
-
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
591 |
-
|
592 |
-
self.in_chans = in_chans
|
593 |
-
self.embed_dim = embed_dim
|
594 |
-
|
595 |
-
if norm_layer is not None:
|
596 |
-
self.norm = norm_layer(embed_dim)
|
597 |
-
else:
|
598 |
-
self.norm = None
|
599 |
-
|
600 |
-
def forward(self, x):
|
601 |
-
x = x.flatten(2).transpose(1, 2) # b Ph*Pw c
|
602 |
-
if self.norm is not None:
|
603 |
-
x = self.norm(x)
|
604 |
-
return x
|
605 |
-
|
606 |
-
def flops(self):
|
607 |
-
flops = 0
|
608 |
-
h, w = self.img_size
|
609 |
-
if self.norm is not None:
|
610 |
-
flops += h * w * self.embed_dim
|
611 |
-
return flops
|
612 |
-
|
613 |
-
|
614 |
-
class PatchUnEmbed(nn.Module):
|
615 |
-
r""" Image to Patch Unembedding
|
616 |
-
|
617 |
-
Args:
|
618 |
-
img_size (int): Image size. Default: 224.
|
619 |
-
patch_size (int): Patch token size. Default: 4.
|
620 |
-
in_chans (int): Number of input image channels. Default: 3.
|
621 |
-
embed_dim (int): Number of linear projection output channels. Default: 96.
|
622 |
-
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
623 |
-
"""
|
624 |
-
|
625 |
-
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
626 |
-
super().__init__()
|
627 |
-
img_size = to_2tuple(img_size)
|
628 |
-
patch_size = to_2tuple(patch_size)
|
629 |
-
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
630 |
-
self.img_size = img_size
|
631 |
-
self.patch_size = patch_size
|
632 |
-
self.patches_resolution = patches_resolution
|
633 |
-
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
634 |
-
|
635 |
-
self.in_chans = in_chans
|
636 |
-
self.embed_dim = embed_dim
|
637 |
-
|
638 |
-
def forward(self, x, x_size):
|
639 |
-
x = x.transpose(1, 2).view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) # b Ph*Pw c
|
640 |
-
return x
|
641 |
-
|
642 |
-
def flops(self):
|
643 |
-
flops = 0
|
644 |
-
return flops
|
645 |
-
|
646 |
-
|
647 |
-
class Upsample(nn.Sequential):
|
648 |
-
"""Upsample module.
|
649 |
-
|
650 |
-
Args:
|
651 |
-
scale (int): Scale factor. Supported scales: 2^n and 3.
|
652 |
-
num_feat (int): Channel number of intermediate features.
|
653 |
-
"""
|
654 |
-
|
655 |
-
def __init__(self, scale, num_feat):
|
656 |
-
m = []
|
657 |
-
if (scale & (scale - 1)) == 0: # scale = 2^n
|
658 |
-
for _ in range(int(math.log(scale, 2))):
|
659 |
-
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
660 |
-
m.append(nn.PixelShuffle(2))
|
661 |
-
elif scale == 3:
|
662 |
-
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
663 |
-
m.append(nn.PixelShuffle(3))
|
664 |
-
else:
|
665 |
-
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
|
666 |
-
super(Upsample, self).__init__(*m)
|
667 |
-
|
668 |
-
|
669 |
-
class UpsampleOneStep(nn.Sequential):
|
670 |
-
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
671 |
-
Used in lightweight SR to save parameters.
|
672 |
-
|
673 |
-
Args:
|
674 |
-
scale (int): Scale factor. Supported scales: 2^n and 3.
|
675 |
-
num_feat (int): Channel number of intermediate features.
|
676 |
-
|
677 |
-
"""
|
678 |
-
|
679 |
-
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
680 |
-
self.num_feat = num_feat
|
681 |
-
self.input_resolution = input_resolution
|
682 |
-
m = []
|
683 |
-
m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1))
|
684 |
-
m.append(nn.PixelShuffle(scale))
|
685 |
-
super(UpsampleOneStep, self).__init__(*m)
|
686 |
-
|
687 |
-
def flops(self):
|
688 |
-
h, w = self.input_resolution
|
689 |
-
flops = h * w * self.num_feat * 3 * 9
|
690 |
-
return flops
|
691 |
-
|
692 |
-
|
693 |
-
@ARCH_REGISTRY.register()
|
694 |
-
class SwinIR(nn.Module):
|
695 |
-
r""" SwinIR
|
696 |
-
A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer.
|
697 |
-
|
698 |
-
Args:
|
699 |
-
img_size (int | tuple(int)): Input image size. Default 64
|
700 |
-
patch_size (int | tuple(int)): Patch size. Default: 1
|
701 |
-
in_chans (int): Number of input image channels. Default: 3
|
702 |
-
embed_dim (int): Patch embedding dimension. Default: 96
|
703 |
-
depths (tuple(int)): Depth of each Swin Transformer layer.
|
704 |
-
num_heads (tuple(int)): Number of attention heads in different layers.
|
705 |
-
window_size (int): Window size. Default: 7
|
706 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
707 |
-
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
708 |
-
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
709 |
-
drop_rate (float): Dropout rate. Default: 0
|
710 |
-
attn_drop_rate (float): Attention dropout rate. Default: 0
|
711 |
-
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
712 |
-
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
713 |
-
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
714 |
-
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
715 |
-
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
716 |
-
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
717 |
-
img_range: Image range. 1. or 255.
|
718 |
-
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
719 |
-
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
720 |
-
"""
|
721 |
-
|
722 |
-
def __init__(self,
|
723 |
-
img_size=64,
|
724 |
-
patch_size=1,
|
725 |
-
in_chans=3,
|
726 |
-
embed_dim=96,
|
727 |
-
depths=(6, 6, 6, 6),
|
728 |
-
num_heads=(6, 6, 6, 6),
|
729 |
-
window_size=7,
|
730 |
-
mlp_ratio=4.,
|
731 |
-
qkv_bias=True,
|
732 |
-
qk_scale=None,
|
733 |
-
drop_rate=0.,
|
734 |
-
attn_drop_rate=0.,
|
735 |
-
drop_path_rate=0.1,
|
736 |
-
norm_layer=nn.LayerNorm,
|
737 |
-
ape=False,
|
738 |
-
patch_norm=True,
|
739 |
-
use_checkpoint=False,
|
740 |
-
upscale=2,
|
741 |
-
img_range=1.,
|
742 |
-
upsampler='',
|
743 |
-
resi_connection='1conv',
|
744 |
-
**kwargs):
|
745 |
-
super(SwinIR, self).__init__()
|
746 |
-
num_in_ch = in_chans
|
747 |
-
num_out_ch = in_chans
|
748 |
-
num_feat = 64
|
749 |
-
self.img_range = img_range
|
750 |
-
if in_chans == 3:
|
751 |
-
rgb_mean = (0.4488, 0.4371, 0.4040)
|
752 |
-
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
753 |
-
else:
|
754 |
-
self.mean = torch.zeros(1, 1, 1, 1)
|
755 |
-
self.upscale = upscale
|
756 |
-
self.upsampler = upsampler
|
757 |
-
|
758 |
-
# ------------------------- 1, shallow feature extraction ------------------------- #
|
759 |
-
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
760 |
-
|
761 |
-
# ------------------------- 2, deep feature extraction ------------------------- #
|
762 |
-
self.num_layers = len(depths)
|
763 |
-
self.embed_dim = embed_dim
|
764 |
-
self.ape = ape
|
765 |
-
self.patch_norm = patch_norm
|
766 |
-
self.num_features = embed_dim
|
767 |
-
self.mlp_ratio = mlp_ratio
|
768 |
-
|
769 |
-
# split image into non-overlapping patches
|
770 |
-
self.patch_embed = PatchEmbed(
|
771 |
-
img_size=img_size,
|
772 |
-
patch_size=patch_size,
|
773 |
-
in_chans=embed_dim,
|
774 |
-
embed_dim=embed_dim,
|
775 |
-
norm_layer=norm_layer if self.patch_norm else None)
|
776 |
-
num_patches = self.patch_embed.num_patches
|
777 |
-
patches_resolution = self.patch_embed.patches_resolution
|
778 |
-
self.patches_resolution = patches_resolution
|
779 |
-
|
780 |
-
# merge non-overlapping patches into image
|
781 |
-
self.patch_unembed = PatchUnEmbed(
|
782 |
-
img_size=img_size,
|
783 |
-
patch_size=patch_size,
|
784 |
-
in_chans=embed_dim,
|
785 |
-
embed_dim=embed_dim,
|
786 |
-
norm_layer=norm_layer if self.patch_norm else None)
|
787 |
-
|
788 |
-
# absolute position embedding
|
789 |
-
if self.ape:
|
790 |
-
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
791 |
-
trunc_normal_(self.absolute_pos_embed, std=.02)
|
792 |
-
|
793 |
-
self.pos_drop = nn.Dropout(p=drop_rate)
|
794 |
-
|
795 |
-
# stochastic depth
|
796 |
-
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
797 |
-
|
798 |
-
# build Residual Swin Transformer blocks (RSTB)
|
799 |
-
self.layers = nn.ModuleList()
|
800 |
-
for i_layer in range(self.num_layers):
|
801 |
-
layer = RSTB(
|
802 |
-
dim=embed_dim,
|
803 |
-
input_resolution=(patches_resolution[0], patches_resolution[1]),
|
804 |
-
depth=depths[i_layer],
|
805 |
-
num_heads=num_heads[i_layer],
|
806 |
-
window_size=window_size,
|
807 |
-
mlp_ratio=self.mlp_ratio,
|
808 |
-
qkv_bias=qkv_bias,
|
809 |
-
qk_scale=qk_scale,
|
810 |
-
drop=drop_rate,
|
811 |
-
attn_drop=attn_drop_rate,
|
812 |
-
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
813 |
-
norm_layer=norm_layer,
|
814 |
-
downsample=None,
|
815 |
-
use_checkpoint=use_checkpoint,
|
816 |
-
img_size=img_size,
|
817 |
-
patch_size=patch_size,
|
818 |
-
resi_connection=resi_connection)
|
819 |
-
self.layers.append(layer)
|
820 |
-
self.norm = norm_layer(self.num_features)
|
821 |
-
|
822 |
-
# build the last conv layer in deep feature extraction
|
823 |
-
if resi_connection == '1conv':
|
824 |
-
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
825 |
-
elif resi_connection == '3conv':
|
826 |
-
# to save parameters and memory
|
827 |
-
self.conv_after_body = nn.Sequential(
|
828 |
-
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
829 |
-
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
830 |
-
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
831 |
-
|
832 |
-
# ------------------------- 3, high quality image reconstruction ------------------------- #
|
833 |
-
if self.upsampler == 'pixelshuffle':
|
834 |
-
# for classical SR
|
835 |
-
self.conv_before_upsample = nn.Sequential(
|
836 |
-
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
|
837 |
-
self.upsample = Upsample(upscale, num_feat)
|
838 |
-
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
839 |
-
elif self.upsampler == 'pixelshuffledirect':
|
840 |
-
# for lightweight SR (to save parameters)
|
841 |
-
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
842 |
-
(patches_resolution[0], patches_resolution[1]))
|
843 |
-
elif self.upsampler == 'nearest+conv':
|
844 |
-
# for real-world SR (less artifacts)
|
845 |
-
assert self.upscale == 4, 'only support x4 now.'
|
846 |
-
self.conv_before_upsample = nn.Sequential(
|
847 |
-
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
|
848 |
-
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
849 |
-
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
850 |
-
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
851 |
-
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
852 |
-
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
853 |
-
else:
|
854 |
-
# for image denoising and JPEG compression artifact reduction
|
855 |
-
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
856 |
-
|
857 |
-
self.apply(self._init_weights)
|
858 |
-
|
859 |
-
def _init_weights(self, m):
|
860 |
-
if isinstance(m, nn.Linear):
|
861 |
-
trunc_normal_(m.weight, std=.02)
|
862 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
863 |
-
nn.init.constant_(m.bias, 0)
|
864 |
-
elif isinstance(m, nn.LayerNorm):
|
865 |
-
nn.init.constant_(m.bias, 0)
|
866 |
-
nn.init.constant_(m.weight, 1.0)
|
867 |
-
|
868 |
-
@torch.jit.ignore
|
869 |
-
def no_weight_decay(self):
|
870 |
-
return {'absolute_pos_embed'}
|
871 |
-
|
872 |
-
@torch.jit.ignore
|
873 |
-
def no_weight_decay_keywords(self):
|
874 |
-
return {'relative_position_bias_table'}
|
875 |
-
|
876 |
-
def forward_features(self, x):
|
877 |
-
x_size = (x.shape[2], x.shape[3])
|
878 |
-
x = self.patch_embed(x)
|
879 |
-
if self.ape:
|
880 |
-
x = x + self.absolute_pos_embed
|
881 |
-
x = self.pos_drop(x)
|
882 |
-
|
883 |
-
for layer in self.layers:
|
884 |
-
x = layer(x, x_size)
|
885 |
-
|
886 |
-
x = self.norm(x) # b seq_len c
|
887 |
-
x = self.patch_unembed(x, x_size)
|
888 |
-
|
889 |
-
return x
|
890 |
-
|
891 |
-
def forward(self, x):
|
892 |
-
self.mean = self.mean.type_as(x)
|
893 |
-
x = (x - self.mean) * self.img_range
|
894 |
-
|
895 |
-
if self.upsampler == 'pixelshuffle':
|
896 |
-
# for classical SR
|
897 |
-
x = self.conv_first(x)
|
898 |
-
x = self.conv_after_body(self.forward_features(x)) + x
|
899 |
-
x = self.conv_before_upsample(x)
|
900 |
-
x = self.conv_last(self.upsample(x))
|
901 |
-
elif self.upsampler == 'pixelshuffledirect':
|
902 |
-
# for lightweight SR
|
903 |
-
x = self.conv_first(x)
|
904 |
-
x = self.conv_after_body(self.forward_features(x)) + x
|
905 |
-
x = self.upsample(x)
|
906 |
-
elif self.upsampler == 'nearest+conv':
|
907 |
-
# for real-world SR
|
908 |
-
x = self.conv_first(x)
|
909 |
-
x = self.conv_after_body(self.forward_features(x)) + x
|
910 |
-
x = self.conv_before_upsample(x)
|
911 |
-
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
912 |
-
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
913 |
-
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
914 |
-
else:
|
915 |
-
# for image denoising and JPEG compression artifact reduction
|
916 |
-
x_first = self.conv_first(x)
|
917 |
-
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
918 |
-
x = x + self.conv_last(res)
|
919 |
-
|
920 |
-
x = x / self.img_range + self.mean
|
921 |
-
|
922 |
-
return x
|
923 |
-
|
924 |
-
def flops(self):
|
925 |
-
flops = 0
|
926 |
-
h, w = self.patches_resolution
|
927 |
-
flops += h * w * 3 * self.embed_dim * 9
|
928 |
-
flops += self.patch_embed.flops()
|
929 |
-
for layer in self.layers:
|
930 |
-
flops += layer.flops()
|
931 |
-
flops += h * w * 3 * self.embed_dim * self.embed_dim
|
932 |
-
flops += self.upsample.flops()
|
933 |
-
return flops
|
934 |
-
|
935 |
-
|
936 |
-
if __name__ == '__main__':
|
937 |
-
upscale = 4
|
938 |
-
window_size = 8
|
939 |
-
height = (1024 // upscale // window_size + 1) * window_size
|
940 |
-
width = (720 // upscale // window_size + 1) * window_size
|
941 |
-
model = SwinIR(
|
942 |
-
upscale=2,
|
943 |
-
img_size=(height, width),
|
944 |
-
window_size=window_size,
|
945 |
-
img_range=1.,
|
946 |
-
depths=[6, 6, 6, 6],
|
947 |
-
embed_dim=60,
|
948 |
-
num_heads=[6, 6, 6, 6],
|
949 |
-
mlp_ratio=2,
|
950 |
-
upsampler='pixelshuffledirect')
|
951 |
-
print(model)
|
952 |
-
print(height, width, model.flops() / 1e9)
|
953 |
-
|
954 |
-
x = torch.randn((1, 3, height, width))
|
955 |
-
x = model(x)
|
956 |
-
print(x.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/tof_arch.py
DELETED
@@ -1,172 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn as nn
|
3 |
-
from torch.nn import functional as F
|
4 |
-
|
5 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
6 |
-
from .arch_util import flow_warp
|
7 |
-
|
8 |
-
|
9 |
-
class BasicModule(nn.Module):
|
10 |
-
"""Basic module of SPyNet.
|
11 |
-
|
12 |
-
Note that unlike the architecture in spynet_arch.py, the basic module
|
13 |
-
here contains batch normalization.
|
14 |
-
"""
|
15 |
-
|
16 |
-
def __init__(self):
|
17 |
-
super(BasicModule, self).__init__()
|
18 |
-
self.basic_module = nn.Sequential(
|
19 |
-
nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False),
|
20 |
-
nn.BatchNorm2d(32), nn.ReLU(inplace=True),
|
21 |
-
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3, bias=False),
|
22 |
-
nn.BatchNorm2d(64), nn.ReLU(inplace=True),
|
23 |
-
nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False),
|
24 |
-
nn.BatchNorm2d(32), nn.ReLU(inplace=True),
|
25 |
-
nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3, bias=False),
|
26 |
-
nn.BatchNorm2d(16), nn.ReLU(inplace=True),
|
27 |
-
nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3))
|
28 |
-
|
29 |
-
def forward(self, tensor_input):
|
30 |
-
"""
|
31 |
-
Args:
|
32 |
-
tensor_input (Tensor): Input tensor with shape (b, 8, h, w).
|
33 |
-
8 channels contain:
|
34 |
-
[reference image (3), neighbor image (3), initial flow (2)].
|
35 |
-
|
36 |
-
Returns:
|
37 |
-
Tensor: Estimated flow with shape (b, 2, h, w)
|
38 |
-
"""
|
39 |
-
return self.basic_module(tensor_input)
|
40 |
-
|
41 |
-
|
42 |
-
class SPyNetTOF(nn.Module):
|
43 |
-
"""SPyNet architecture for TOF.
|
44 |
-
|
45 |
-
Note that this implementation is specifically for TOFlow. Please use :file:`spynet_arch.py` for general use.
|
46 |
-
They differ in the following aspects:
|
47 |
-
|
48 |
-
1. The basic modules here contain BatchNorm.
|
49 |
-
2. Normalization and denormalization are not done here, as they are done in TOFlow.
|
50 |
-
|
51 |
-
``Paper: Optical Flow Estimation using a Spatial Pyramid Network``
|
52 |
-
|
53 |
-
Reference: https://github.com/Coldog2333/pytoflow
|
54 |
-
|
55 |
-
Args:
|
56 |
-
load_path (str): Path for pretrained SPyNet. Default: None.
|
57 |
-
"""
|
58 |
-
|
59 |
-
def __init__(self, load_path=None):
|
60 |
-
super(SPyNetTOF, self).__init__()
|
61 |
-
|
62 |
-
self.basic_module = nn.ModuleList([BasicModule() for _ in range(4)])
|
63 |
-
if load_path:
|
64 |
-
self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params'])
|
65 |
-
|
66 |
-
def forward(self, ref, supp):
|
67 |
-
"""
|
68 |
-
Args:
|
69 |
-
ref (Tensor): Reference image with shape of (b, 3, h, w).
|
70 |
-
supp: The supporting image to be warped: (b, 3, h, w).
|
71 |
-
|
72 |
-
Returns:
|
73 |
-
Tensor: Estimated optical flow: (b, 2, h, w).
|
74 |
-
"""
|
75 |
-
num_batches, _, h, w = ref.size()
|
76 |
-
ref = [ref]
|
77 |
-
supp = [supp]
|
78 |
-
|
79 |
-
# generate downsampled frames
|
80 |
-
for _ in range(3):
|
81 |
-
ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False))
|
82 |
-
supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False))
|
83 |
-
|
84 |
-
# flow computation
|
85 |
-
flow = ref[0].new_zeros(num_batches, 2, h // 16, w // 16)
|
86 |
-
for i in range(4):
|
87 |
-
flow_up = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0
|
88 |
-
flow = flow_up + self.basic_module[i](
|
89 |
-
torch.cat([ref[i], flow_warp(supp[i], flow_up.permute(0, 2, 3, 1)), flow_up], 1))
|
90 |
-
return flow
|
91 |
-
|
92 |
-
|
93 |
-
@ARCH_REGISTRY.register()
|
94 |
-
class TOFlow(nn.Module):
|
95 |
-
"""PyTorch implementation of TOFlow.
|
96 |
-
|
97 |
-
In TOFlow, the LR frames are pre-upsampled and have the same size with the GT frames.
|
98 |
-
|
99 |
-
``Paper: Video Enhancement with Task-Oriented Flow``
|
100 |
-
|
101 |
-
Reference: https://github.com/anchen1011/toflow
|
102 |
-
|
103 |
-
Reference: https://github.com/Coldog2333/pytoflow
|
104 |
-
|
105 |
-
Args:
|
106 |
-
adapt_official_weights (bool): Whether to adapt the weights translated
|
107 |
-
from the official implementation. Set to false if you want to
|
108 |
-
train from scratch. Default: False
|
109 |
-
"""
|
110 |
-
|
111 |
-
def __init__(self, adapt_official_weights=False):
|
112 |
-
super(TOFlow, self).__init__()
|
113 |
-
self.adapt_official_weights = adapt_official_weights
|
114 |
-
self.ref_idx = 0 if adapt_official_weights else 3
|
115 |
-
|
116 |
-
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
|
117 |
-
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
|
118 |
-
|
119 |
-
# flow estimation module
|
120 |
-
self.spynet = SPyNetTOF()
|
121 |
-
|
122 |
-
# reconstruction module
|
123 |
-
self.conv_1 = nn.Conv2d(3 * 7, 64, 9, 1, 4)
|
124 |
-
self.conv_2 = nn.Conv2d(64, 64, 9, 1, 4)
|
125 |
-
self.conv_3 = nn.Conv2d(64, 64, 1)
|
126 |
-
self.conv_4 = nn.Conv2d(64, 3, 1)
|
127 |
-
|
128 |
-
# activation function
|
129 |
-
self.relu = nn.ReLU(inplace=True)
|
130 |
-
|
131 |
-
def normalize(self, img):
|
132 |
-
return (img - self.mean) / self.std
|
133 |
-
|
134 |
-
def denormalize(self, img):
|
135 |
-
return img * self.std + self.mean
|
136 |
-
|
137 |
-
def forward(self, lrs):
|
138 |
-
"""
|
139 |
-
Args:
|
140 |
-
lrs: Input lr frames: (b, 7, 3, h, w).
|
141 |
-
|
142 |
-
Returns:
|
143 |
-
Tensor: SR frame: (b, 3, h, w).
|
144 |
-
"""
|
145 |
-
# In the official implementation, the 0-th frame is the reference frame
|
146 |
-
if self.adapt_official_weights:
|
147 |
-
lrs = lrs[:, [3, 0, 1, 2, 4, 5, 6], :, :, :]
|
148 |
-
|
149 |
-
num_batches, num_lrs, _, h, w = lrs.size()
|
150 |
-
|
151 |
-
lrs = self.normalize(lrs.view(-1, 3, h, w))
|
152 |
-
lrs = lrs.view(num_batches, num_lrs, 3, h, w)
|
153 |
-
|
154 |
-
lr_ref = lrs[:, self.ref_idx, :, :, :]
|
155 |
-
lr_aligned = []
|
156 |
-
for i in range(7): # 7 frames
|
157 |
-
if i == self.ref_idx:
|
158 |
-
lr_aligned.append(lr_ref)
|
159 |
-
else:
|
160 |
-
lr_supp = lrs[:, i, :, :, :]
|
161 |
-
flow = self.spynet(lr_ref, lr_supp)
|
162 |
-
lr_aligned.append(flow_warp(lr_supp, flow.permute(0, 2, 3, 1)))
|
163 |
-
|
164 |
-
# reconstruction
|
165 |
-
hr = torch.stack(lr_aligned, dim=1)
|
166 |
-
hr = hr.view(num_batches, -1, h, w)
|
167 |
-
hr = self.relu(self.conv_1(hr))
|
168 |
-
hr = self.relu(self.conv_2(hr))
|
169 |
-
hr = self.relu(self.conv_3(hr))
|
170 |
-
hr = self.conv_4(hr) + lr_ref
|
171 |
-
|
172 |
-
return self.denormalize(hr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/archs/vgg_arch.py
DELETED
@@ -1,161 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
from collections import OrderedDict
|
4 |
-
from torch import nn as nn
|
5 |
-
from torchvision.models import vgg as vgg
|
6 |
-
|
7 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
8 |
-
|
9 |
-
VGG_PRETRAIN_PATH = 'experiments/pretrained_models/vgg19-dcbb9e9d.pth'
|
10 |
-
NAMES = {
|
11 |
-
'vgg11': [
|
12 |
-
'conv1_1', 'relu1_1', 'pool1', 'conv2_1', 'relu2_1', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2',
|
13 |
-
'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2',
|
14 |
-
'pool5'
|
15 |
-
],
|
16 |
-
'vgg13': [
|
17 |
-
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
18 |
-
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4',
|
19 |
-
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'pool5'
|
20 |
-
],
|
21 |
-
'vgg16': [
|
22 |
-
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
23 |
-
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2',
|
24 |
-
'relu4_2', 'conv4_3', 'relu4_3', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3',
|
25 |
-
'pool5'
|
26 |
-
],
|
27 |
-
'vgg19': [
|
28 |
-
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
|
29 |
-
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1',
|
30 |
-
'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1',
|
31 |
-
'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4', 'pool5'
|
32 |
-
]
|
33 |
-
}
|
34 |
-
|
35 |
-
|
36 |
-
def insert_bn(names):
|
37 |
-
"""Insert bn layer after each conv.
|
38 |
-
|
39 |
-
Args:
|
40 |
-
names (list): The list of layer names.
|
41 |
-
|
42 |
-
Returns:
|
43 |
-
list: The list of layer names with bn layers.
|
44 |
-
"""
|
45 |
-
names_bn = []
|
46 |
-
for name in names:
|
47 |
-
names_bn.append(name)
|
48 |
-
if 'conv' in name:
|
49 |
-
position = name.replace('conv', '')
|
50 |
-
names_bn.append('bn' + position)
|
51 |
-
return names_bn
|
52 |
-
|
53 |
-
|
54 |
-
@ARCH_REGISTRY.register()
|
55 |
-
class VGGFeatureExtractor(nn.Module):
|
56 |
-
"""VGG network for feature extraction.
|
57 |
-
|
58 |
-
In this implementation, we allow users to choose whether use normalization
|
59 |
-
in the input feature and the type of vgg network. Note that the pretrained
|
60 |
-
path must fit the vgg type.
|
61 |
-
|
62 |
-
Args:
|
63 |
-
layer_name_list (list[str]): Forward function returns the corresponding
|
64 |
-
features according to the layer_name_list.
|
65 |
-
Example: {'relu1_1', 'relu2_1', 'relu3_1'}.
|
66 |
-
vgg_type (str): Set the type of vgg network. Default: 'vgg19'.
|
67 |
-
use_input_norm (bool): If True, normalize the input image. Importantly,
|
68 |
-
the input feature must in the range [0, 1]. Default: True.
|
69 |
-
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
|
70 |
-
Default: False.
|
71 |
-
requires_grad (bool): If true, the parameters of VGG network will be
|
72 |
-
optimized. Default: False.
|
73 |
-
remove_pooling (bool): If true, the max pooling operations in VGG net
|
74 |
-
will be removed. Default: False.
|
75 |
-
pooling_stride (int): The stride of max pooling operation. Default: 2.
|
76 |
-
"""
|
77 |
-
|
78 |
-
def __init__(self,
|
79 |
-
layer_name_list,
|
80 |
-
vgg_type='vgg19',
|
81 |
-
use_input_norm=True,
|
82 |
-
range_norm=False,
|
83 |
-
requires_grad=False,
|
84 |
-
remove_pooling=False,
|
85 |
-
pooling_stride=2):
|
86 |
-
super(VGGFeatureExtractor, self).__init__()
|
87 |
-
|
88 |
-
self.layer_name_list = layer_name_list
|
89 |
-
self.use_input_norm = use_input_norm
|
90 |
-
self.range_norm = range_norm
|
91 |
-
|
92 |
-
self.names = NAMES[vgg_type.replace('_bn', '')]
|
93 |
-
if 'bn' in vgg_type:
|
94 |
-
self.names = insert_bn(self.names)
|
95 |
-
|
96 |
-
# only borrow layers that will be used to avoid unused params
|
97 |
-
max_idx = 0
|
98 |
-
for v in layer_name_list:
|
99 |
-
idx = self.names.index(v)
|
100 |
-
if idx > max_idx:
|
101 |
-
max_idx = idx
|
102 |
-
|
103 |
-
if os.path.exists(VGG_PRETRAIN_PATH):
|
104 |
-
vgg_net = getattr(vgg, vgg_type)(pretrained=False)
|
105 |
-
state_dict = torch.load(VGG_PRETRAIN_PATH, map_location=lambda storage, loc: storage)
|
106 |
-
vgg_net.load_state_dict(state_dict)
|
107 |
-
else:
|
108 |
-
vgg_net = getattr(vgg, vgg_type)(pretrained=True)
|
109 |
-
|
110 |
-
features = vgg_net.features[:max_idx + 1]
|
111 |
-
|
112 |
-
modified_net = OrderedDict()
|
113 |
-
for k, v in zip(self.names, features):
|
114 |
-
if 'pool' in k:
|
115 |
-
# if remove_pooling is true, pooling operation will be removed
|
116 |
-
if remove_pooling:
|
117 |
-
continue
|
118 |
-
else:
|
119 |
-
# in some cases, we may want to change the default stride
|
120 |
-
modified_net[k] = nn.MaxPool2d(kernel_size=2, stride=pooling_stride)
|
121 |
-
else:
|
122 |
-
modified_net[k] = v
|
123 |
-
|
124 |
-
self.vgg_net = nn.Sequential(modified_net)
|
125 |
-
|
126 |
-
if not requires_grad:
|
127 |
-
self.vgg_net.eval()
|
128 |
-
for param in self.parameters():
|
129 |
-
param.requires_grad = False
|
130 |
-
else:
|
131 |
-
self.vgg_net.train()
|
132 |
-
for param in self.parameters():
|
133 |
-
param.requires_grad = True
|
134 |
-
|
135 |
-
if self.use_input_norm:
|
136 |
-
# the mean is for image with range [0, 1]
|
137 |
-
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
|
138 |
-
# the std is for image with range [0, 1]
|
139 |
-
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
|
140 |
-
|
141 |
-
def forward(self, x):
|
142 |
-
"""Forward function.
|
143 |
-
|
144 |
-
Args:
|
145 |
-
x (Tensor): Input tensor with shape (n, c, h, w).
|
146 |
-
|
147 |
-
Returns:
|
148 |
-
Tensor: Forward results.
|
149 |
-
"""
|
150 |
-
if self.range_norm:
|
151 |
-
x = (x + 1) / 2
|
152 |
-
if self.use_input_norm:
|
153 |
-
x = (x - self.mean) / self.std
|
154 |
-
|
155 |
-
output = {}
|
156 |
-
for key, layer in self.vgg_net._modules.items():
|
157 |
-
x = layer(x)
|
158 |
-
if key in self.layer_name_list:
|
159 |
-
output[key] = x.clone()
|
160 |
-
|
161 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/data/__init__.py
DELETED
@@ -1,101 +0,0 @@
|
|
1 |
-
import importlib
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
import torch
|
5 |
-
import torch.utils.data
|
6 |
-
from copy import deepcopy
|
7 |
-
from functools import partial
|
8 |
-
from os import path as osp
|
9 |
-
|
10 |
-
from basicsr.data.prefetch_dataloader import PrefetchDataLoader
|
11 |
-
from basicsr.utils import get_root_logger, scandir
|
12 |
-
from basicsr.utils.dist_util import get_dist_info
|
13 |
-
from basicsr.utils.registry import DATASET_REGISTRY
|
14 |
-
|
15 |
-
__all__ = ['build_dataset', 'build_dataloader']
|
16 |
-
|
17 |
-
# automatically scan and import dataset modules for registry
|
18 |
-
# scan all the files under the data folder with '_dataset' in file names
|
19 |
-
data_folder = osp.dirname(osp.abspath(__file__))
|
20 |
-
dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
|
21 |
-
# import all the dataset modules
|
22 |
-
_dataset_modules = [importlib.import_module(f'basicsr.data.{file_name}') for file_name in dataset_filenames]
|
23 |
-
|
24 |
-
|
25 |
-
def build_dataset(dataset_opt):
|
26 |
-
"""Build dataset from options.
|
27 |
-
|
28 |
-
Args:
|
29 |
-
dataset_opt (dict): Configuration for dataset. It must contain:
|
30 |
-
name (str): Dataset name.
|
31 |
-
type (str): Dataset type.
|
32 |
-
"""
|
33 |
-
dataset_opt = deepcopy(dataset_opt)
|
34 |
-
dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt)
|
35 |
-
logger = get_root_logger()
|
36 |
-
logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} is built.')
|
37 |
-
return dataset
|
38 |
-
|
39 |
-
|
40 |
-
def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None):
|
41 |
-
"""Build dataloader.
|
42 |
-
|
43 |
-
Args:
|
44 |
-
dataset (torch.utils.data.Dataset): Dataset.
|
45 |
-
dataset_opt (dict): Dataset options. It contains the following keys:
|
46 |
-
phase (str): 'train' or 'val'.
|
47 |
-
num_worker_per_gpu (int): Number of workers for each GPU.
|
48 |
-
batch_size_per_gpu (int): Training batch size for each GPU.
|
49 |
-
num_gpu (int): Number of GPUs. Used only in the train phase.
|
50 |
-
Default: 1.
|
51 |
-
dist (bool): Whether in distributed training. Used only in the train
|
52 |
-
phase. Default: False.
|
53 |
-
sampler (torch.utils.data.sampler): Data sampler. Default: None.
|
54 |
-
seed (int | None): Seed. Default: None
|
55 |
-
"""
|
56 |
-
phase = dataset_opt['phase']
|
57 |
-
rank, _ = get_dist_info()
|
58 |
-
if phase == 'train':
|
59 |
-
if dist: # distributed training
|
60 |
-
batch_size = dataset_opt['batch_size_per_gpu']
|
61 |
-
num_workers = dataset_opt['num_worker_per_gpu']
|
62 |
-
else: # non-distributed training
|
63 |
-
multiplier = 1 if num_gpu == 0 else num_gpu
|
64 |
-
batch_size = dataset_opt['batch_size_per_gpu'] * multiplier
|
65 |
-
num_workers = dataset_opt['num_worker_per_gpu'] * multiplier
|
66 |
-
dataloader_args = dict(
|
67 |
-
dataset=dataset,
|
68 |
-
batch_size=batch_size,
|
69 |
-
shuffle=False,
|
70 |
-
num_workers=num_workers,
|
71 |
-
sampler=sampler,
|
72 |
-
drop_last=True)
|
73 |
-
if sampler is None:
|
74 |
-
dataloader_args['shuffle'] = True
|
75 |
-
dataloader_args['worker_init_fn'] = partial(
|
76 |
-
worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None
|
77 |
-
elif phase in ['val', 'test']: # validation
|
78 |
-
dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
|
79 |
-
else:
|
80 |
-
raise ValueError(f"Wrong dataset phase: {phase}. Supported ones are 'train', 'val' and 'test'.")
|
81 |
-
|
82 |
-
dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False)
|
83 |
-
dataloader_args['persistent_workers'] = dataset_opt.get('persistent_workers', False)
|
84 |
-
|
85 |
-
prefetch_mode = dataset_opt.get('prefetch_mode')
|
86 |
-
if prefetch_mode == 'cpu': # CPUPrefetcher
|
87 |
-
num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
|
88 |
-
logger = get_root_logger()
|
89 |
-
logger.info(f'Use {prefetch_mode} prefetch dataloader: num_prefetch_queue = {num_prefetch_queue}')
|
90 |
-
return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args)
|
91 |
-
else:
|
92 |
-
# prefetch_mode=None: Normal dataloader
|
93 |
-
# prefetch_mode='cuda': dataloader for CUDAPrefetcher
|
94 |
-
return torch.utils.data.DataLoader(**dataloader_args)
|
95 |
-
|
96 |
-
|
97 |
-
def worker_init_fn(worker_id, num_workers, rank, seed):
|
98 |
-
# Set the worker seed to num_workers * rank + worker_id + seed
|
99 |
-
worker_seed = num_workers * rank + worker_id + seed
|
100 |
-
np.random.seed(worker_seed)
|
101 |
-
random.seed(worker_seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/data/data_sampler.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
from torch.utils.data.sampler import Sampler
|
4 |
-
|
5 |
-
|
6 |
-
class EnlargedSampler(Sampler):
|
7 |
-
"""Sampler that restricts data loading to a subset of the dataset.
|
8 |
-
|
9 |
-
Modified from torch.utils.data.distributed.DistributedSampler
|
10 |
-
Support enlarging the dataset for iteration-based training, for saving
|
11 |
-
time when restart the dataloader after each epoch
|
12 |
-
|
13 |
-
Args:
|
14 |
-
dataset (torch.utils.data.Dataset): Dataset used for sampling.
|
15 |
-
num_replicas (int | None): Number of processes participating in
|
16 |
-
the training. It is usually the world_size.
|
17 |
-
rank (int | None): Rank of the current process within num_replicas.
|
18 |
-
ratio (int): Enlarging ratio. Default: 1.
|
19 |
-
"""
|
20 |
-
|
21 |
-
def __init__(self, dataset, num_replicas, rank, ratio=1):
|
22 |
-
self.dataset = dataset
|
23 |
-
self.num_replicas = num_replicas
|
24 |
-
self.rank = rank
|
25 |
-
self.epoch = 0
|
26 |
-
self.num_samples = math.ceil(len(self.dataset) * ratio / self.num_replicas)
|
27 |
-
self.total_size = self.num_samples * self.num_replicas
|
28 |
-
|
29 |
-
def __iter__(self):
|
30 |
-
# deterministically shuffle based on epoch
|
31 |
-
g = torch.Generator()
|
32 |
-
g.manual_seed(self.epoch)
|
33 |
-
indices = torch.randperm(self.total_size, generator=g).tolist()
|
34 |
-
|
35 |
-
dataset_size = len(self.dataset)
|
36 |
-
indices = [v % dataset_size for v in indices]
|
37 |
-
|
38 |
-
# subsample
|
39 |
-
indices = indices[self.rank:self.total_size:self.num_replicas]
|
40 |
-
assert len(indices) == self.num_samples
|
41 |
-
|
42 |
-
return iter(indices)
|
43 |
-
|
44 |
-
def __len__(self):
|
45 |
-
return self.num_samples
|
46 |
-
|
47 |
-
def set_epoch(self, epoch):
|
48 |
-
self.epoch = epoch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/data/data_util.py
DELETED
@@ -1,315 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from os import path as osp
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
from basicsr.data.transforms import mod_crop
|
8 |
-
from basicsr.utils import img2tensor, scandir
|
9 |
-
|
10 |
-
|
11 |
-
def read_img_seq(path, require_mod_crop=False, scale=1, return_imgname=False):
|
12 |
-
"""Read a sequence of images from a given folder path.
|
13 |
-
|
14 |
-
Args:
|
15 |
-
path (list[str] | str): List of image paths or image folder path.
|
16 |
-
require_mod_crop (bool): Require mod crop for each image.
|
17 |
-
Default: False.
|
18 |
-
scale (int): Scale factor for mod_crop. Default: 1.
|
19 |
-
return_imgname(bool): Whether return image names. Default False.
|
20 |
-
|
21 |
-
Returns:
|
22 |
-
Tensor: size (t, c, h, w), RGB, [0, 1].
|
23 |
-
list[str]: Returned image name list.
|
24 |
-
"""
|
25 |
-
if isinstance(path, list):
|
26 |
-
img_paths = path
|
27 |
-
else:
|
28 |
-
img_paths = sorted(list(scandir(path, full_path=True)))
|
29 |
-
imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths]
|
30 |
-
|
31 |
-
if require_mod_crop:
|
32 |
-
imgs = [mod_crop(img, scale) for img in imgs]
|
33 |
-
imgs = img2tensor(imgs, bgr2rgb=True, float32=True)
|
34 |
-
imgs = torch.stack(imgs, dim=0)
|
35 |
-
|
36 |
-
if return_imgname:
|
37 |
-
imgnames = [osp.splitext(osp.basename(path))[0] for path in img_paths]
|
38 |
-
return imgs, imgnames
|
39 |
-
else:
|
40 |
-
return imgs
|
41 |
-
|
42 |
-
|
43 |
-
def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'):
|
44 |
-
"""Generate an index list for reading `num_frames` frames from a sequence
|
45 |
-
of images.
|
46 |
-
|
47 |
-
Args:
|
48 |
-
crt_idx (int): Current center index.
|
49 |
-
max_frame_num (int): Max number of the sequence of images (from 1).
|
50 |
-
num_frames (int): Reading num_frames frames.
|
51 |
-
padding (str): Padding mode, one of
|
52 |
-
'replicate' | 'reflection' | 'reflection_circle' | 'circle'
|
53 |
-
Examples: current_idx = 0, num_frames = 5
|
54 |
-
The generated frame indices under different padding mode:
|
55 |
-
replicate: [0, 0, 0, 1, 2]
|
56 |
-
reflection: [2, 1, 0, 1, 2]
|
57 |
-
reflection_circle: [4, 3, 0, 1, 2]
|
58 |
-
circle: [3, 4, 0, 1, 2]
|
59 |
-
|
60 |
-
Returns:
|
61 |
-
list[int]: A list of indices.
|
62 |
-
"""
|
63 |
-
assert num_frames % 2 == 1, 'num_frames should be an odd number.'
|
64 |
-
assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.'
|
65 |
-
|
66 |
-
max_frame_num = max_frame_num - 1 # start from 0
|
67 |
-
num_pad = num_frames // 2
|
68 |
-
|
69 |
-
indices = []
|
70 |
-
for i in range(crt_idx - num_pad, crt_idx + num_pad + 1):
|
71 |
-
if i < 0:
|
72 |
-
if padding == 'replicate':
|
73 |
-
pad_idx = 0
|
74 |
-
elif padding == 'reflection':
|
75 |
-
pad_idx = -i
|
76 |
-
elif padding == 'reflection_circle':
|
77 |
-
pad_idx = crt_idx + num_pad - i
|
78 |
-
else:
|
79 |
-
pad_idx = num_frames + i
|
80 |
-
elif i > max_frame_num:
|
81 |
-
if padding == 'replicate':
|
82 |
-
pad_idx = max_frame_num
|
83 |
-
elif padding == 'reflection':
|
84 |
-
pad_idx = max_frame_num * 2 - i
|
85 |
-
elif padding == 'reflection_circle':
|
86 |
-
pad_idx = (crt_idx - num_pad) - (i - max_frame_num)
|
87 |
-
else:
|
88 |
-
pad_idx = i - num_frames
|
89 |
-
else:
|
90 |
-
pad_idx = i
|
91 |
-
indices.append(pad_idx)
|
92 |
-
return indices
|
93 |
-
|
94 |
-
|
95 |
-
def paired_paths_from_lmdb(folders, keys):
|
96 |
-
"""Generate paired paths from lmdb files.
|
97 |
-
|
98 |
-
Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is:
|
99 |
-
|
100 |
-
::
|
101 |
-
|
102 |
-
lq.lmdb
|
103 |
-
├── data.mdb
|
104 |
-
├── lock.mdb
|
105 |
-
├── meta_info.txt
|
106 |
-
|
107 |
-
The data.mdb and lock.mdb are standard lmdb files and you can refer to
|
108 |
-
https://lmdb.readthedocs.io/en/release/ for more details.
|
109 |
-
|
110 |
-
The meta_info.txt is a specified txt file to record the meta information
|
111 |
-
of our datasets. It will be automatically created when preparing
|
112 |
-
datasets by our provided dataset tools.
|
113 |
-
Each line in the txt file records
|
114 |
-
1)image name (with extension),
|
115 |
-
2)image shape,
|
116 |
-
3)compression level, separated by a white space.
|
117 |
-
Example: `baboon.png (120,125,3) 1`
|
118 |
-
|
119 |
-
We use the image name without extension as the lmdb key.
|
120 |
-
Note that we use the same key for the corresponding lq and gt images.
|
121 |
-
|
122 |
-
Args:
|
123 |
-
folders (list[str]): A list of folder path. The order of list should
|
124 |
-
be [input_folder, gt_folder].
|
125 |
-
keys (list[str]): A list of keys identifying folders. The order should
|
126 |
-
be in consistent with folders, e.g., ['lq', 'gt'].
|
127 |
-
Note that this key is different from lmdb keys.
|
128 |
-
|
129 |
-
Returns:
|
130 |
-
list[str]: Returned path list.
|
131 |
-
"""
|
132 |
-
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
133 |
-
f'But got {len(folders)}')
|
134 |
-
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
|
135 |
-
input_folder, gt_folder = folders
|
136 |
-
input_key, gt_key = keys
|
137 |
-
|
138 |
-
if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')):
|
139 |
-
raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb '
|
140 |
-
f'formats. But received {input_key}: {input_folder}; '
|
141 |
-
f'{gt_key}: {gt_folder}')
|
142 |
-
# ensure that the two meta_info files are the same
|
143 |
-
with open(osp.join(input_folder, 'meta_info.txt')) as fin:
|
144 |
-
input_lmdb_keys = [line.split('.')[0] for line in fin]
|
145 |
-
with open(osp.join(gt_folder, 'meta_info.txt')) as fin:
|
146 |
-
gt_lmdb_keys = [line.split('.')[0] for line in fin]
|
147 |
-
if set(input_lmdb_keys) != set(gt_lmdb_keys):
|
148 |
-
raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.')
|
149 |
-
else:
|
150 |
-
paths = []
|
151 |
-
for lmdb_key in sorted(input_lmdb_keys):
|
152 |
-
paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)]))
|
153 |
-
return paths
|
154 |
-
|
155 |
-
|
156 |
-
def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl):
|
157 |
-
"""Generate paired paths from an meta information file.
|
158 |
-
|
159 |
-
Each line in the meta information file contains the image names and
|
160 |
-
image shape (usually for gt), separated by a white space.
|
161 |
-
|
162 |
-
Example of an meta information file:
|
163 |
-
```
|
164 |
-
0001_s001.png (480,480,3)
|
165 |
-
0001_s002.png (480,480,3)
|
166 |
-
```
|
167 |
-
|
168 |
-
Args:
|
169 |
-
folders (list[str]): A list of folder path. The order of list should
|
170 |
-
be [input_folder, gt_folder].
|
171 |
-
keys (list[str]): A list of keys identifying folders. The order should
|
172 |
-
be in consistent with folders, e.g., ['lq', 'gt'].
|
173 |
-
meta_info_file (str): Path to the meta information file.
|
174 |
-
filename_tmpl (str): Template for each filename. Note that the
|
175 |
-
template excludes the file extension. Usually the filename_tmpl is
|
176 |
-
for files in the input folder.
|
177 |
-
|
178 |
-
Returns:
|
179 |
-
list[str]: Returned path list.
|
180 |
-
"""
|
181 |
-
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
182 |
-
f'But got {len(folders)}')
|
183 |
-
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
|
184 |
-
input_folder, gt_folder = folders
|
185 |
-
input_key, gt_key = keys
|
186 |
-
|
187 |
-
with open(meta_info_file, 'r') as fin:
|
188 |
-
gt_names = [line.strip().split(' ')[0] for line in fin]
|
189 |
-
|
190 |
-
paths = []
|
191 |
-
for gt_name in gt_names:
|
192 |
-
basename, ext = osp.splitext(osp.basename(gt_name))
|
193 |
-
input_name = f'{filename_tmpl.format(basename)}{ext}'
|
194 |
-
input_path = osp.join(input_folder, input_name)
|
195 |
-
gt_path = osp.join(gt_folder, gt_name)
|
196 |
-
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
|
197 |
-
return paths
|
198 |
-
|
199 |
-
|
200 |
-
def paired_paths_from_folder(folders, keys, filename_tmpl):
|
201 |
-
"""Generate paired paths from folders.
|
202 |
-
|
203 |
-
Args:
|
204 |
-
folders (list[str]): A list of folder path. The order of list should
|
205 |
-
be [input_folder, gt_folder].
|
206 |
-
keys (list[str]): A list of keys identifying folders. The order should
|
207 |
-
be in consistent with folders, e.g., ['lq', 'gt'].
|
208 |
-
filename_tmpl (str): Template for each filename. Note that the
|
209 |
-
template excludes the file extension. Usually the filename_tmpl is
|
210 |
-
for files in the input folder.
|
211 |
-
|
212 |
-
Returns:
|
213 |
-
list[str]: Returned path list.
|
214 |
-
"""
|
215 |
-
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
216 |
-
f'But got {len(folders)}')
|
217 |
-
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
|
218 |
-
input_folder, gt_folder = folders
|
219 |
-
input_key, gt_key = keys
|
220 |
-
|
221 |
-
input_paths = list(scandir(input_folder))
|
222 |
-
gt_paths = list(scandir(gt_folder))
|
223 |
-
assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: '
|
224 |
-
f'{len(input_paths)}, {len(gt_paths)}.')
|
225 |
-
paths = []
|
226 |
-
for gt_path in gt_paths:
|
227 |
-
basename, ext = osp.splitext(osp.basename(gt_path))
|
228 |
-
input_name = f'{filename_tmpl.format(basename)}{ext}'
|
229 |
-
input_path = osp.join(input_folder, input_name)
|
230 |
-
assert input_name in input_paths, f'{input_name} is not in {input_key}_paths.'
|
231 |
-
gt_path = osp.join(gt_folder, gt_path)
|
232 |
-
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
|
233 |
-
return paths
|
234 |
-
|
235 |
-
|
236 |
-
def paths_from_folder(folder):
|
237 |
-
"""Generate paths from folder.
|
238 |
-
|
239 |
-
Args:
|
240 |
-
folder (str): Folder path.
|
241 |
-
|
242 |
-
Returns:
|
243 |
-
list[str]: Returned path list.
|
244 |
-
"""
|
245 |
-
|
246 |
-
paths = list(scandir(folder))
|
247 |
-
paths = [osp.join(folder, path) for path in paths]
|
248 |
-
return paths
|
249 |
-
|
250 |
-
|
251 |
-
def paths_from_lmdb(folder):
|
252 |
-
"""Generate paths from lmdb.
|
253 |
-
|
254 |
-
Args:
|
255 |
-
folder (str): Folder path.
|
256 |
-
|
257 |
-
Returns:
|
258 |
-
list[str]: Returned path list.
|
259 |
-
"""
|
260 |
-
if not folder.endswith('.lmdb'):
|
261 |
-
raise ValueError(f'Folder {folder}folder should in lmdb format.')
|
262 |
-
with open(osp.join(folder, 'meta_info.txt')) as fin:
|
263 |
-
paths = [line.split('.')[0] for line in fin]
|
264 |
-
return paths
|
265 |
-
|
266 |
-
|
267 |
-
def generate_gaussian_kernel(kernel_size=13, sigma=1.6):
|
268 |
-
"""Generate Gaussian kernel used in `duf_downsample`.
|
269 |
-
|
270 |
-
Args:
|
271 |
-
kernel_size (int): Kernel size. Default: 13.
|
272 |
-
sigma (float): Sigma of the Gaussian kernel. Default: 1.6.
|
273 |
-
|
274 |
-
Returns:
|
275 |
-
np.array: The Gaussian kernel.
|
276 |
-
"""
|
277 |
-
from scipy.ndimage import filters as filters
|
278 |
-
kernel = np.zeros((kernel_size, kernel_size))
|
279 |
-
# set element at the middle to one, a dirac delta
|
280 |
-
kernel[kernel_size // 2, kernel_size // 2] = 1
|
281 |
-
# gaussian-smooth the dirac, resulting in a gaussian filter
|
282 |
-
return filters.gaussian_filter(kernel, sigma)
|
283 |
-
|
284 |
-
|
285 |
-
def duf_downsample(x, kernel_size=13, scale=4):
|
286 |
-
"""Downsamping with Gaussian kernel used in the DUF official code.
|
287 |
-
|
288 |
-
Args:
|
289 |
-
x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w).
|
290 |
-
kernel_size (int): Kernel size. Default: 13.
|
291 |
-
scale (int): Downsampling factor. Supported scale: (2, 3, 4).
|
292 |
-
Default: 4.
|
293 |
-
|
294 |
-
Returns:
|
295 |
-
Tensor: DUF downsampled frames.
|
296 |
-
"""
|
297 |
-
assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.'
|
298 |
-
|
299 |
-
squeeze_flag = False
|
300 |
-
if x.ndim == 4:
|
301 |
-
squeeze_flag = True
|
302 |
-
x = x.unsqueeze(0)
|
303 |
-
b, t, c, h, w = x.size()
|
304 |
-
x = x.view(-1, 1, h, w)
|
305 |
-
pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2
|
306 |
-
x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect')
|
307 |
-
|
308 |
-
gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale)
|
309 |
-
gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0)
|
310 |
-
x = F.conv2d(x, gaussian_filter, stride=scale)
|
311 |
-
x = x[:, :, 2:-2, 2:-2]
|
312 |
-
x = x.view(b, t, c, x.size(2), x.size(3))
|
313 |
-
if squeeze_flag:
|
314 |
-
x = x.squeeze(0)
|
315 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/data/degradations.py
DELETED
@@ -1,764 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import math
|
3 |
-
import numpy as np
|
4 |
-
import random
|
5 |
-
import torch
|
6 |
-
from scipy import special
|
7 |
-
from scipy.stats import multivariate_normal
|
8 |
-
from torchvision.transforms.functional import rgb_to_grayscale
|
9 |
-
|
10 |
-
# -------------------------------------------------------------------- #
|
11 |
-
# --------------------------- blur kernels --------------------------- #
|
12 |
-
# -------------------------------------------------------------------- #
|
13 |
-
|
14 |
-
|
15 |
-
# --------------------------- util functions --------------------------- #
|
16 |
-
def sigma_matrix2(sig_x, sig_y, theta):
|
17 |
-
"""Calculate the rotated sigma matrix (two dimensional matrix).
|
18 |
-
|
19 |
-
Args:
|
20 |
-
sig_x (float):
|
21 |
-
sig_y (float):
|
22 |
-
theta (float): Radian measurement.
|
23 |
-
|
24 |
-
Returns:
|
25 |
-
ndarray: Rotated sigma matrix.
|
26 |
-
"""
|
27 |
-
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]])
|
28 |
-
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
|
29 |
-
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
|
30 |
-
|
31 |
-
|
32 |
-
def mesh_grid(kernel_size):
|
33 |
-
"""Generate the mesh grid, centering at zero.
|
34 |
-
|
35 |
-
Args:
|
36 |
-
kernel_size (int):
|
37 |
-
|
38 |
-
Returns:
|
39 |
-
xy (ndarray): with the shape (kernel_size, kernel_size, 2)
|
40 |
-
xx (ndarray): with the shape (kernel_size, kernel_size)
|
41 |
-
yy (ndarray): with the shape (kernel_size, kernel_size)
|
42 |
-
"""
|
43 |
-
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.)
|
44 |
-
xx, yy = np.meshgrid(ax, ax)
|
45 |
-
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size,
|
46 |
-
1))).reshape(kernel_size, kernel_size, 2)
|
47 |
-
return xy, xx, yy
|
48 |
-
|
49 |
-
|
50 |
-
def pdf2(sigma_matrix, grid):
|
51 |
-
"""Calculate PDF of the bivariate Gaussian distribution.
|
52 |
-
|
53 |
-
Args:
|
54 |
-
sigma_matrix (ndarray): with the shape (2, 2)
|
55 |
-
grid (ndarray): generated by :func:`mesh_grid`,
|
56 |
-
with the shape (K, K, 2), K is the kernel size.
|
57 |
-
|
58 |
-
Returns:
|
59 |
-
kernel (ndarrray): un-normalized kernel.
|
60 |
-
"""
|
61 |
-
inverse_sigma = np.linalg.inv(sigma_matrix)
|
62 |
-
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2))
|
63 |
-
return kernel
|
64 |
-
|
65 |
-
|
66 |
-
def cdf2(d_matrix, grid):
|
67 |
-
"""Calculate the CDF of the standard bivariate Gaussian distribution.
|
68 |
-
Used in skewed Gaussian distribution.
|
69 |
-
|
70 |
-
Args:
|
71 |
-
d_matrix (ndarrasy): skew matrix.
|
72 |
-
grid (ndarray): generated by :func:`mesh_grid`,
|
73 |
-
with the shape (K, K, 2), K is the kernel size.
|
74 |
-
|
75 |
-
Returns:
|
76 |
-
cdf (ndarray): skewed cdf.
|
77 |
-
"""
|
78 |
-
rv = multivariate_normal([0, 0], [[1, 0], [0, 1]])
|
79 |
-
grid = np.dot(grid, d_matrix)
|
80 |
-
cdf = rv.cdf(grid)
|
81 |
-
return cdf
|
82 |
-
|
83 |
-
|
84 |
-
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True):
|
85 |
-
"""Generate a bivariate isotropic or anisotropic Gaussian kernel.
|
86 |
-
|
87 |
-
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
|
88 |
-
|
89 |
-
Args:
|
90 |
-
kernel_size (int):
|
91 |
-
sig_x (float):
|
92 |
-
sig_y (float):
|
93 |
-
theta (float): Radian measurement.
|
94 |
-
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
95 |
-
with the shape (K, K, 2), K is the kernel size. Default: None
|
96 |
-
isotropic (bool):
|
97 |
-
|
98 |
-
Returns:
|
99 |
-
kernel (ndarray): normalized kernel.
|
100 |
-
"""
|
101 |
-
if grid is None:
|
102 |
-
grid, _, _ = mesh_grid(kernel_size)
|
103 |
-
if isotropic:
|
104 |
-
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
|
105 |
-
else:
|
106 |
-
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
107 |
-
kernel = pdf2(sigma_matrix, grid)
|
108 |
-
kernel = kernel / np.sum(kernel)
|
109 |
-
return kernel
|
110 |
-
|
111 |
-
|
112 |
-
def bivariate_generalized_Gaussian(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
|
113 |
-
"""Generate a bivariate generalized Gaussian kernel.
|
114 |
-
|
115 |
-
``Paper: Parameter Estimation For Multivariate Generalized Gaussian Distributions``
|
116 |
-
|
117 |
-
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
|
118 |
-
|
119 |
-
Args:
|
120 |
-
kernel_size (int):
|
121 |
-
sig_x (float):
|
122 |
-
sig_y (float):
|
123 |
-
theta (float): Radian measurement.
|
124 |
-
beta (float): shape parameter, beta = 1 is the normal distribution.
|
125 |
-
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
126 |
-
with the shape (K, K, 2), K is the kernel size. Default: None
|
127 |
-
|
128 |
-
Returns:
|
129 |
-
kernel (ndarray): normalized kernel.
|
130 |
-
"""
|
131 |
-
if grid is None:
|
132 |
-
grid, _, _ = mesh_grid(kernel_size)
|
133 |
-
if isotropic:
|
134 |
-
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
|
135 |
-
else:
|
136 |
-
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
137 |
-
inverse_sigma = np.linalg.inv(sigma_matrix)
|
138 |
-
kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
|
139 |
-
kernel = kernel / np.sum(kernel)
|
140 |
-
return kernel
|
141 |
-
|
142 |
-
|
143 |
-
def bivariate_plateau(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
|
144 |
-
"""Generate a plateau-like anisotropic kernel.
|
145 |
-
|
146 |
-
1 / (1+x^(beta))
|
147 |
-
|
148 |
-
Reference: https://stats.stackexchange.com/questions/203629/is-there-a-plateau-shaped-distribution
|
149 |
-
|
150 |
-
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
|
151 |
-
|
152 |
-
Args:
|
153 |
-
kernel_size (int):
|
154 |
-
sig_x (float):
|
155 |
-
sig_y (float):
|
156 |
-
theta (float): Radian measurement.
|
157 |
-
beta (float): shape parameter, beta = 1 is the normal distribution.
|
158 |
-
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
159 |
-
with the shape (K, K, 2), K is the kernel size. Default: None
|
160 |
-
|
161 |
-
Returns:
|
162 |
-
kernel (ndarray): normalized kernel.
|
163 |
-
"""
|
164 |
-
if grid is None:
|
165 |
-
grid, _, _ = mesh_grid(kernel_size)
|
166 |
-
if isotropic:
|
167 |
-
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
|
168 |
-
else:
|
169 |
-
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
170 |
-
inverse_sigma = np.linalg.inv(sigma_matrix)
|
171 |
-
kernel = np.reciprocal(np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1)
|
172 |
-
kernel = kernel / np.sum(kernel)
|
173 |
-
return kernel
|
174 |
-
|
175 |
-
|
176 |
-
def random_bivariate_Gaussian(kernel_size,
|
177 |
-
sigma_x_range,
|
178 |
-
sigma_y_range,
|
179 |
-
rotation_range,
|
180 |
-
noise_range=None,
|
181 |
-
isotropic=True):
|
182 |
-
"""Randomly generate bivariate isotropic or anisotropic Gaussian kernels.
|
183 |
-
|
184 |
-
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
|
185 |
-
|
186 |
-
Args:
|
187 |
-
kernel_size (int):
|
188 |
-
sigma_x_range (tuple): [0.6, 5]
|
189 |
-
sigma_y_range (tuple): [0.6, 5]
|
190 |
-
rotation range (tuple): [-math.pi, math.pi]
|
191 |
-
noise_range(tuple, optional): multiplicative kernel noise,
|
192 |
-
[0.75, 1.25]. Default: None
|
193 |
-
|
194 |
-
Returns:
|
195 |
-
kernel (ndarray):
|
196 |
-
"""
|
197 |
-
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
198 |
-
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
199 |
-
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
200 |
-
if isotropic is False:
|
201 |
-
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
202 |
-
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
203 |
-
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
204 |
-
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
205 |
-
else:
|
206 |
-
sigma_y = sigma_x
|
207 |
-
rotation = 0
|
208 |
-
|
209 |
-
kernel = bivariate_Gaussian(kernel_size, sigma_x, sigma_y, rotation, isotropic=isotropic)
|
210 |
-
|
211 |
-
# add multiplicative noise
|
212 |
-
if noise_range is not None:
|
213 |
-
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
214 |
-
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
|
215 |
-
kernel = kernel * noise
|
216 |
-
kernel = kernel / np.sum(kernel)
|
217 |
-
return kernel
|
218 |
-
|
219 |
-
|
220 |
-
def random_bivariate_generalized_Gaussian(kernel_size,
|
221 |
-
sigma_x_range,
|
222 |
-
sigma_y_range,
|
223 |
-
rotation_range,
|
224 |
-
beta_range,
|
225 |
-
noise_range=None,
|
226 |
-
isotropic=True):
|
227 |
-
"""Randomly generate bivariate generalized Gaussian kernels.
|
228 |
-
|
229 |
-
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
|
230 |
-
|
231 |
-
Args:
|
232 |
-
kernel_size (int):
|
233 |
-
sigma_x_range (tuple): [0.6, 5]
|
234 |
-
sigma_y_range (tuple): [0.6, 5]
|
235 |
-
rotation range (tuple): [-math.pi, math.pi]
|
236 |
-
beta_range (tuple): [0.5, 8]
|
237 |
-
noise_range(tuple, optional): multiplicative kernel noise,
|
238 |
-
[0.75, 1.25]. Default: None
|
239 |
-
|
240 |
-
Returns:
|
241 |
-
kernel (ndarray):
|
242 |
-
"""
|
243 |
-
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
244 |
-
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
245 |
-
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
246 |
-
if isotropic is False:
|
247 |
-
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
248 |
-
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
249 |
-
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
250 |
-
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
251 |
-
else:
|
252 |
-
sigma_y = sigma_x
|
253 |
-
rotation = 0
|
254 |
-
|
255 |
-
# assume beta_range[0] < 1 < beta_range[1]
|
256 |
-
if np.random.uniform() < 0.5:
|
257 |
-
beta = np.random.uniform(beta_range[0], 1)
|
258 |
-
else:
|
259 |
-
beta = np.random.uniform(1, beta_range[1])
|
260 |
-
|
261 |
-
kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
|
262 |
-
|
263 |
-
# add multiplicative noise
|
264 |
-
if noise_range is not None:
|
265 |
-
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
266 |
-
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
|
267 |
-
kernel = kernel * noise
|
268 |
-
kernel = kernel / np.sum(kernel)
|
269 |
-
return kernel
|
270 |
-
|
271 |
-
|
272 |
-
def random_bivariate_plateau(kernel_size,
|
273 |
-
sigma_x_range,
|
274 |
-
sigma_y_range,
|
275 |
-
rotation_range,
|
276 |
-
beta_range,
|
277 |
-
noise_range=None,
|
278 |
-
isotropic=True):
|
279 |
-
"""Randomly generate bivariate plateau kernels.
|
280 |
-
|
281 |
-
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
|
282 |
-
|
283 |
-
Args:
|
284 |
-
kernel_size (int):
|
285 |
-
sigma_x_range (tuple): [0.6, 5]
|
286 |
-
sigma_y_range (tuple): [0.6, 5]
|
287 |
-
rotation range (tuple): [-math.pi/2, math.pi/2]
|
288 |
-
beta_range (tuple): [1, 4]
|
289 |
-
noise_range(tuple, optional): multiplicative kernel noise,
|
290 |
-
[0.75, 1.25]. Default: None
|
291 |
-
|
292 |
-
Returns:
|
293 |
-
kernel (ndarray):
|
294 |
-
"""
|
295 |
-
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
296 |
-
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
297 |
-
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
298 |
-
if isotropic is False:
|
299 |
-
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
300 |
-
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
301 |
-
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
302 |
-
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
303 |
-
else:
|
304 |
-
sigma_y = sigma_x
|
305 |
-
rotation = 0
|
306 |
-
|
307 |
-
# TODO: this may be not proper
|
308 |
-
if np.random.uniform() < 0.5:
|
309 |
-
beta = np.random.uniform(beta_range[0], 1)
|
310 |
-
else:
|
311 |
-
beta = np.random.uniform(1, beta_range[1])
|
312 |
-
|
313 |
-
kernel = bivariate_plateau(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
|
314 |
-
# add multiplicative noise
|
315 |
-
if noise_range is not None:
|
316 |
-
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
317 |
-
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
|
318 |
-
kernel = kernel * noise
|
319 |
-
kernel = kernel / np.sum(kernel)
|
320 |
-
|
321 |
-
return kernel
|
322 |
-
|
323 |
-
|
324 |
-
def random_mixed_kernels(kernel_list,
|
325 |
-
kernel_prob,
|
326 |
-
kernel_size=21,
|
327 |
-
sigma_x_range=(0.6, 5),
|
328 |
-
sigma_y_range=(0.6, 5),
|
329 |
-
rotation_range=(-math.pi, math.pi),
|
330 |
-
betag_range=(0.5, 8),
|
331 |
-
betap_range=(0.5, 8),
|
332 |
-
noise_range=None):
|
333 |
-
"""Randomly generate mixed kernels.
|
334 |
-
|
335 |
-
Args:
|
336 |
-
kernel_list (tuple): a list name of kernel types,
|
337 |
-
support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso',
|
338 |
-
'plateau_aniso']
|
339 |
-
kernel_prob (tuple): corresponding kernel probability for each
|
340 |
-
kernel type
|
341 |
-
kernel_size (int):
|
342 |
-
sigma_x_range (tuple): [0.6, 5]
|
343 |
-
sigma_y_range (tuple): [0.6, 5]
|
344 |
-
rotation range (tuple): [-math.pi, math.pi]
|
345 |
-
beta_range (tuple): [0.5, 8]
|
346 |
-
noise_range(tuple, optional): multiplicative kernel noise,
|
347 |
-
[0.75, 1.25]. Default: None
|
348 |
-
|
349 |
-
Returns:
|
350 |
-
kernel (ndarray):
|
351 |
-
"""
|
352 |
-
kernel_type = random.choices(kernel_list, kernel_prob)[0]
|
353 |
-
if kernel_type == 'iso':
|
354 |
-
kernel = random_bivariate_Gaussian(
|
355 |
-
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True)
|
356 |
-
elif kernel_type == 'aniso':
|
357 |
-
kernel = random_bivariate_Gaussian(
|
358 |
-
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False)
|
359 |
-
elif kernel_type == 'generalized_iso':
|
360 |
-
kernel = random_bivariate_generalized_Gaussian(
|
361 |
-
kernel_size,
|
362 |
-
sigma_x_range,
|
363 |
-
sigma_y_range,
|
364 |
-
rotation_range,
|
365 |
-
betag_range,
|
366 |
-
noise_range=noise_range,
|
367 |
-
isotropic=True)
|
368 |
-
elif kernel_type == 'generalized_aniso':
|
369 |
-
kernel = random_bivariate_generalized_Gaussian(
|
370 |
-
kernel_size,
|
371 |
-
sigma_x_range,
|
372 |
-
sigma_y_range,
|
373 |
-
rotation_range,
|
374 |
-
betag_range,
|
375 |
-
noise_range=noise_range,
|
376 |
-
isotropic=False)
|
377 |
-
elif kernel_type == 'plateau_iso':
|
378 |
-
kernel = random_bivariate_plateau(
|
379 |
-
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True)
|
380 |
-
elif kernel_type == 'plateau_aniso':
|
381 |
-
kernel = random_bivariate_plateau(
|
382 |
-
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False)
|
383 |
-
return kernel
|
384 |
-
|
385 |
-
|
386 |
-
np.seterr(divide='ignore', invalid='ignore')
|
387 |
-
|
388 |
-
|
389 |
-
def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0):
|
390 |
-
"""2D sinc filter
|
391 |
-
|
392 |
-
Reference: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter
|
393 |
-
|
394 |
-
Args:
|
395 |
-
cutoff (float): cutoff frequency in radians (pi is max)
|
396 |
-
kernel_size (int): horizontal and vertical size, must be odd.
|
397 |
-
pad_to (int): pad kernel size to desired size, must be odd or zero.
|
398 |
-
"""
|
399 |
-
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
400 |
-
kernel = np.fromfunction(
|
401 |
-
lambda x, y: cutoff * special.j1(cutoff * np.sqrt(
|
402 |
-
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)) / (2 * np.pi * np.sqrt(
|
403 |
-
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)), [kernel_size, kernel_size])
|
404 |
-
kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff**2 / (4 * np.pi)
|
405 |
-
kernel = kernel / np.sum(kernel)
|
406 |
-
if pad_to > kernel_size:
|
407 |
-
pad_size = (pad_to - kernel_size) // 2
|
408 |
-
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
|
409 |
-
return kernel
|
410 |
-
|
411 |
-
|
412 |
-
# ------------------------------------------------------------- #
|
413 |
-
# --------------------------- noise --------------------------- #
|
414 |
-
# ------------------------------------------------------------- #
|
415 |
-
|
416 |
-
# ----------------------- Gaussian Noise ----------------------- #
|
417 |
-
|
418 |
-
|
419 |
-
def generate_gaussian_noise(img, sigma=10, gray_noise=False):
|
420 |
-
"""Generate Gaussian noise.
|
421 |
-
|
422 |
-
Args:
|
423 |
-
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
424 |
-
sigma (float): Noise scale (measured in range 255). Default: 10.
|
425 |
-
|
426 |
-
Returns:
|
427 |
-
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
428 |
-
float32.
|
429 |
-
"""
|
430 |
-
if gray_noise:
|
431 |
-
noise = np.float32(np.random.randn(*(img.shape[0:2]))) * sigma / 255.
|
432 |
-
noise = np.expand_dims(noise, axis=2).repeat(3, axis=2)
|
433 |
-
else:
|
434 |
-
noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255.
|
435 |
-
return noise
|
436 |
-
|
437 |
-
|
438 |
-
def add_gaussian_noise(img, sigma=10, clip=True, rounds=False, gray_noise=False):
|
439 |
-
"""Add Gaussian noise.
|
440 |
-
|
441 |
-
Args:
|
442 |
-
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
443 |
-
sigma (float): Noise scale (measured in range 255). Default: 10.
|
444 |
-
|
445 |
-
Returns:
|
446 |
-
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
447 |
-
float32.
|
448 |
-
"""
|
449 |
-
noise = generate_gaussian_noise(img, sigma, gray_noise)
|
450 |
-
out = img + noise
|
451 |
-
if clip and rounds:
|
452 |
-
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
453 |
-
elif clip:
|
454 |
-
out = np.clip(out, 0, 1)
|
455 |
-
elif rounds:
|
456 |
-
out = (out * 255.0).round() / 255.
|
457 |
-
return out
|
458 |
-
|
459 |
-
|
460 |
-
def generate_gaussian_noise_pt(img, sigma=10, gray_noise=0):
|
461 |
-
"""Add Gaussian noise (PyTorch version).
|
462 |
-
|
463 |
-
Args:
|
464 |
-
img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
|
465 |
-
scale (float | Tensor): Noise scale. Default: 1.0.
|
466 |
-
|
467 |
-
Returns:
|
468 |
-
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
469 |
-
float32.
|
470 |
-
"""
|
471 |
-
b, _, h, w = img.size()
|
472 |
-
if not isinstance(sigma, (float, int)):
|
473 |
-
sigma = sigma.view(img.size(0), 1, 1, 1)
|
474 |
-
if isinstance(gray_noise, (float, int)):
|
475 |
-
cal_gray_noise = gray_noise > 0
|
476 |
-
else:
|
477 |
-
gray_noise = gray_noise.view(b, 1, 1, 1)
|
478 |
-
cal_gray_noise = torch.sum(gray_noise) > 0
|
479 |
-
|
480 |
-
if cal_gray_noise:
|
481 |
-
noise_gray = torch.randn(*img.size()[2:4], dtype=img.dtype, device=img.device) * sigma / 255.
|
482 |
-
noise_gray = noise_gray.view(b, 1, h, w)
|
483 |
-
|
484 |
-
# always calculate color noise
|
485 |
-
noise = torch.randn(*img.size(), dtype=img.dtype, device=img.device) * sigma / 255.
|
486 |
-
|
487 |
-
if cal_gray_noise:
|
488 |
-
noise = noise * (1 - gray_noise) + noise_gray * gray_noise
|
489 |
-
return noise
|
490 |
-
|
491 |
-
|
492 |
-
def add_gaussian_noise_pt(img, sigma=10, gray_noise=0, clip=True, rounds=False):
|
493 |
-
"""Add Gaussian noise (PyTorch version).
|
494 |
-
|
495 |
-
Args:
|
496 |
-
img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
|
497 |
-
scale (float | Tensor): Noise scale. Default: 1.0.
|
498 |
-
|
499 |
-
Returns:
|
500 |
-
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
501 |
-
float32.
|
502 |
-
"""
|
503 |
-
noise = generate_gaussian_noise_pt(img, sigma, gray_noise)
|
504 |
-
out = img + noise
|
505 |
-
if clip and rounds:
|
506 |
-
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
507 |
-
elif clip:
|
508 |
-
out = torch.clamp(out, 0, 1)
|
509 |
-
elif rounds:
|
510 |
-
out = (out * 255.0).round() / 255.
|
511 |
-
return out
|
512 |
-
|
513 |
-
|
514 |
-
# ----------------------- Random Gaussian Noise ----------------------- #
|
515 |
-
def random_generate_gaussian_noise(img, sigma_range=(0, 10), gray_prob=0):
|
516 |
-
sigma = np.random.uniform(sigma_range[0], sigma_range[1])
|
517 |
-
if np.random.uniform() < gray_prob:
|
518 |
-
gray_noise = True
|
519 |
-
else:
|
520 |
-
gray_noise = False
|
521 |
-
return generate_gaussian_noise(img, sigma, gray_noise)
|
522 |
-
|
523 |
-
|
524 |
-
def random_add_gaussian_noise(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
525 |
-
noise = random_generate_gaussian_noise(img, sigma_range, gray_prob)
|
526 |
-
out = img + noise
|
527 |
-
if clip and rounds:
|
528 |
-
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
529 |
-
elif clip:
|
530 |
-
out = np.clip(out, 0, 1)
|
531 |
-
elif rounds:
|
532 |
-
out = (out * 255.0).round() / 255.
|
533 |
-
return out
|
534 |
-
|
535 |
-
|
536 |
-
def random_generate_gaussian_noise_pt(img, sigma_range=(0, 10), gray_prob=0):
|
537 |
-
sigma = torch.rand(
|
538 |
-
img.size(0), dtype=img.dtype, device=img.device) * (sigma_range[1] - sigma_range[0]) + sigma_range[0]
|
539 |
-
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
|
540 |
-
gray_noise = (gray_noise < gray_prob).float()
|
541 |
-
return generate_gaussian_noise_pt(img, sigma, gray_noise)
|
542 |
-
|
543 |
-
|
544 |
-
def random_add_gaussian_noise_pt(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
545 |
-
noise = random_generate_gaussian_noise_pt(img, sigma_range, gray_prob)
|
546 |
-
out = img + noise
|
547 |
-
if clip and rounds:
|
548 |
-
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
549 |
-
elif clip:
|
550 |
-
out = torch.clamp(out, 0, 1)
|
551 |
-
elif rounds:
|
552 |
-
out = (out * 255.0).round() / 255.
|
553 |
-
return out
|
554 |
-
|
555 |
-
|
556 |
-
# ----------------------- Poisson (Shot) Noise ----------------------- #
|
557 |
-
|
558 |
-
|
559 |
-
def generate_poisson_noise(img, scale=1.0, gray_noise=False):
|
560 |
-
"""Generate poisson noise.
|
561 |
-
|
562 |
-
Reference: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/noise.py#L37-L219
|
563 |
-
|
564 |
-
Args:
|
565 |
-
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
566 |
-
scale (float): Noise scale. Default: 1.0.
|
567 |
-
gray_noise (bool): Whether generate gray noise. Default: False.
|
568 |
-
|
569 |
-
Returns:
|
570 |
-
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
571 |
-
float32.
|
572 |
-
"""
|
573 |
-
if gray_noise:
|
574 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
575 |
-
# round and clip image for counting vals correctly
|
576 |
-
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
577 |
-
vals = len(np.unique(img))
|
578 |
-
vals = 2**np.ceil(np.log2(vals))
|
579 |
-
out = np.float32(np.random.poisson(img * vals) / float(vals))
|
580 |
-
noise = out - img
|
581 |
-
if gray_noise:
|
582 |
-
noise = np.repeat(noise[:, :, np.newaxis], 3, axis=2)
|
583 |
-
return noise * scale
|
584 |
-
|
585 |
-
|
586 |
-
def add_poisson_noise(img, scale=1.0, clip=True, rounds=False, gray_noise=False):
|
587 |
-
"""Add poisson noise.
|
588 |
-
|
589 |
-
Args:
|
590 |
-
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
591 |
-
scale (float): Noise scale. Default: 1.0.
|
592 |
-
gray_noise (bool): Whether generate gray noise. Default: False.
|
593 |
-
|
594 |
-
Returns:
|
595 |
-
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
596 |
-
float32.
|
597 |
-
"""
|
598 |
-
noise = generate_poisson_noise(img, scale, gray_noise)
|
599 |
-
out = img + noise
|
600 |
-
if clip and rounds:
|
601 |
-
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
602 |
-
elif clip:
|
603 |
-
out = np.clip(out, 0, 1)
|
604 |
-
elif rounds:
|
605 |
-
out = (out * 255.0).round() / 255.
|
606 |
-
return out
|
607 |
-
|
608 |
-
|
609 |
-
def generate_poisson_noise_pt(img, scale=1.0, gray_noise=0):
|
610 |
-
"""Generate a batch of poisson noise (PyTorch version)
|
611 |
-
|
612 |
-
Args:
|
613 |
-
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
|
614 |
-
scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
|
615 |
-
Default: 1.0.
|
616 |
-
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
|
617 |
-
0 for False, 1 for True. Default: 0.
|
618 |
-
|
619 |
-
Returns:
|
620 |
-
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
621 |
-
float32.
|
622 |
-
"""
|
623 |
-
b, _, h, w = img.size()
|
624 |
-
if isinstance(gray_noise, (float, int)):
|
625 |
-
cal_gray_noise = gray_noise > 0
|
626 |
-
else:
|
627 |
-
gray_noise = gray_noise.view(b, 1, 1, 1)
|
628 |
-
cal_gray_noise = torch.sum(gray_noise) > 0
|
629 |
-
if cal_gray_noise:
|
630 |
-
img_gray = rgb_to_grayscale(img, num_output_channels=1)
|
631 |
-
# round and clip image for counting vals correctly
|
632 |
-
img_gray = torch.clamp((img_gray * 255.0).round(), 0, 255) / 255.
|
633 |
-
# use for-loop to get the unique values for each sample
|
634 |
-
vals_list = [len(torch.unique(img_gray[i, :, :, :])) for i in range(b)]
|
635 |
-
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
|
636 |
-
vals = img_gray.new_tensor(vals_list).view(b, 1, 1, 1)
|
637 |
-
out = torch.poisson(img_gray * vals) / vals
|
638 |
-
noise_gray = out - img_gray
|
639 |
-
noise_gray = noise_gray.expand(b, 3, h, w)
|
640 |
-
|
641 |
-
# always calculate color noise
|
642 |
-
# round and clip image for counting vals correctly
|
643 |
-
img = torch.clamp((img * 255.0).round(), 0, 255) / 255.
|
644 |
-
# use for-loop to get the unique values for each sample
|
645 |
-
vals_list = [len(torch.unique(img[i, :, :, :])) for i in range(b)]
|
646 |
-
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
|
647 |
-
vals = img.new_tensor(vals_list).view(b, 1, 1, 1)
|
648 |
-
out = torch.poisson(img * vals) / vals
|
649 |
-
noise = out - img
|
650 |
-
if cal_gray_noise:
|
651 |
-
noise = noise * (1 - gray_noise) + noise_gray * gray_noise
|
652 |
-
if not isinstance(scale, (float, int)):
|
653 |
-
scale = scale.view(b, 1, 1, 1)
|
654 |
-
return noise * scale
|
655 |
-
|
656 |
-
|
657 |
-
def add_poisson_noise_pt(img, scale=1.0, clip=True, rounds=False, gray_noise=0):
|
658 |
-
"""Add poisson noise to a batch of images (PyTorch version).
|
659 |
-
|
660 |
-
Args:
|
661 |
-
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
|
662 |
-
scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
|
663 |
-
Default: 1.0.
|
664 |
-
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
|
665 |
-
0 for False, 1 for True. Default: 0.
|
666 |
-
|
667 |
-
Returns:
|
668 |
-
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
669 |
-
float32.
|
670 |
-
"""
|
671 |
-
noise = generate_poisson_noise_pt(img, scale, gray_noise)
|
672 |
-
out = img + noise
|
673 |
-
if clip and rounds:
|
674 |
-
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
675 |
-
elif clip:
|
676 |
-
out = torch.clamp(out, 0, 1)
|
677 |
-
elif rounds:
|
678 |
-
out = (out * 255.0).round() / 255.
|
679 |
-
return out
|
680 |
-
|
681 |
-
|
682 |
-
# ----------------------- Random Poisson (Shot) Noise ----------------------- #
|
683 |
-
|
684 |
-
|
685 |
-
def random_generate_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0):
|
686 |
-
scale = np.random.uniform(scale_range[0], scale_range[1])
|
687 |
-
if np.random.uniform() < gray_prob:
|
688 |
-
gray_noise = True
|
689 |
-
else:
|
690 |
-
gray_noise = False
|
691 |
-
return generate_poisson_noise(img, scale, gray_noise)
|
692 |
-
|
693 |
-
|
694 |
-
def random_add_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
695 |
-
noise = random_generate_poisson_noise(img, scale_range, gray_prob)
|
696 |
-
out = img + noise
|
697 |
-
if clip and rounds:
|
698 |
-
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
699 |
-
elif clip:
|
700 |
-
out = np.clip(out, 0, 1)
|
701 |
-
elif rounds:
|
702 |
-
out = (out * 255.0).round() / 255.
|
703 |
-
return out
|
704 |
-
|
705 |
-
|
706 |
-
def random_generate_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0):
|
707 |
-
scale = torch.rand(
|
708 |
-
img.size(0), dtype=img.dtype, device=img.device) * (scale_range[1] - scale_range[0]) + scale_range[0]
|
709 |
-
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
|
710 |
-
gray_noise = (gray_noise < gray_prob).float()
|
711 |
-
return generate_poisson_noise_pt(img, scale, gray_noise)
|
712 |
-
|
713 |
-
|
714 |
-
def random_add_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
715 |
-
noise = random_generate_poisson_noise_pt(img, scale_range, gray_prob)
|
716 |
-
out = img + noise
|
717 |
-
if clip and rounds:
|
718 |
-
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
719 |
-
elif clip:
|
720 |
-
out = torch.clamp(out, 0, 1)
|
721 |
-
elif rounds:
|
722 |
-
out = (out * 255.0).round() / 255.
|
723 |
-
return out
|
724 |
-
|
725 |
-
|
726 |
-
# ------------------------------------------------------------------------ #
|
727 |
-
# --------------------------- JPEG compression --------------------------- #
|
728 |
-
# ------------------------------------------------------------------------ #
|
729 |
-
|
730 |
-
|
731 |
-
def add_jpg_compression(img, quality=90):
|
732 |
-
"""Add JPG compression artifacts.
|
733 |
-
|
734 |
-
Args:
|
735 |
-
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
736 |
-
quality (float): JPG compression quality. 0 for lowest quality, 100 for
|
737 |
-
best quality. Default: 90.
|
738 |
-
|
739 |
-
Returns:
|
740 |
-
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
|
741 |
-
float32.
|
742 |
-
"""
|
743 |
-
img = np.clip(img, 0, 1)
|
744 |
-
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
745 |
-
_, encimg = cv2.imencode('.jpg', img * 255., encode_param)
|
746 |
-
img = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
747 |
-
return img
|
748 |
-
|
749 |
-
|
750 |
-
def random_add_jpg_compression(img, quality_range=(90, 100)):
|
751 |
-
"""Randomly add JPG compression artifacts.
|
752 |
-
|
753 |
-
Args:
|
754 |
-
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
755 |
-
quality_range (tuple[float] | list[float]): JPG compression quality
|
756 |
-
range. 0 for lowest quality, 100 for best quality.
|
757 |
-
Default: (90, 100).
|
758 |
-
|
759 |
-
Returns:
|
760 |
-
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
|
761 |
-
float32.
|
762 |
-
"""
|
763 |
-
quality = np.random.uniform(quality_range[0], quality_range[1])
|
764 |
-
return add_jpg_compression(img, quality)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/data/ffhq_dataset.py
DELETED
@@ -1,80 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
import time
|
3 |
-
from os import path as osp
|
4 |
-
from torch.utils import data as data
|
5 |
-
from torchvision.transforms.functional import normalize
|
6 |
-
|
7 |
-
from basicsr.data.transforms import augment
|
8 |
-
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
|
9 |
-
from basicsr.utils.registry import DATASET_REGISTRY
|
10 |
-
|
11 |
-
|
12 |
-
@DATASET_REGISTRY.register()
|
13 |
-
class FFHQDataset(data.Dataset):
|
14 |
-
"""FFHQ dataset for StyleGAN.
|
15 |
-
|
16 |
-
Args:
|
17 |
-
opt (dict): Config for train datasets. It contains the following keys:
|
18 |
-
dataroot_gt (str): Data root path for gt.
|
19 |
-
io_backend (dict): IO backend type and other kwarg.
|
20 |
-
mean (list | tuple): Image mean.
|
21 |
-
std (list | tuple): Image std.
|
22 |
-
use_hflip (bool): Whether to horizontally flip.
|
23 |
-
|
24 |
-
"""
|
25 |
-
|
26 |
-
def __init__(self, opt):
|
27 |
-
super(FFHQDataset, self).__init__()
|
28 |
-
self.opt = opt
|
29 |
-
# file client (io backend)
|
30 |
-
self.file_client = None
|
31 |
-
self.io_backend_opt = opt['io_backend']
|
32 |
-
|
33 |
-
self.gt_folder = opt['dataroot_gt']
|
34 |
-
self.mean = opt['mean']
|
35 |
-
self.std = opt['std']
|
36 |
-
|
37 |
-
if self.io_backend_opt['type'] == 'lmdb':
|
38 |
-
self.io_backend_opt['db_paths'] = self.gt_folder
|
39 |
-
if not self.gt_folder.endswith('.lmdb'):
|
40 |
-
raise ValueError("'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
|
41 |
-
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
|
42 |
-
self.paths = [line.split('.')[0] for line in fin]
|
43 |
-
else:
|
44 |
-
# FFHQ has 70000 images in total
|
45 |
-
self.paths = [osp.join(self.gt_folder, f'{v:08d}.png') for v in range(70000)]
|
46 |
-
|
47 |
-
def __getitem__(self, index):
|
48 |
-
if self.file_client is None:
|
49 |
-
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
50 |
-
|
51 |
-
# load gt image
|
52 |
-
gt_path = self.paths[index]
|
53 |
-
# avoid errors caused by high latency in reading files
|
54 |
-
retry = 3
|
55 |
-
while retry > 0:
|
56 |
-
try:
|
57 |
-
img_bytes = self.file_client.get(gt_path)
|
58 |
-
except Exception as e:
|
59 |
-
logger = get_root_logger()
|
60 |
-
logger.warning(f'File client error: {e}, remaining retry times: {retry - 1}')
|
61 |
-
# change another file to read
|
62 |
-
index = random.randint(0, self.__len__())
|
63 |
-
gt_path = self.paths[index]
|
64 |
-
time.sleep(1) # sleep 1s for occasional server congestion
|
65 |
-
else:
|
66 |
-
break
|
67 |
-
finally:
|
68 |
-
retry -= 1
|
69 |
-
img_gt = imfrombytes(img_bytes, float32=True)
|
70 |
-
|
71 |
-
# random horizontal flip
|
72 |
-
img_gt = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False)
|
73 |
-
# BGR to RGB, HWC to CHW, numpy to tensor
|
74 |
-
img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True)
|
75 |
-
# normalize
|
76 |
-
normalize(img_gt, self.mean, self.std, inplace=True)
|
77 |
-
return {'gt': img_gt, 'gt_path': gt_path}
|
78 |
-
|
79 |
-
def __len__(self):
|
80 |
-
return len(self.paths)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basicsr/data/meta_info/meta_info_DIV2K800sub_GT.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|