Spaces:
Sleeping
Sleeping
import torch | |
from pathlib import Path | |
from utils import get_download_file | |
from stkey import read_safetensors_key | |
try: | |
from diffusers import BitsAndBytesConfig | |
is_nf4 = True | |
except Exception: | |
is_nf4 = False | |
DTYPE_DEFAULT = "default" | |
DTYPE_DICT = { | |
"fp16": torch.float16, | |
"bf16": torch.bfloat16, | |
"fp32": torch.float32, | |
"fp8": torch.float8_e4m3fn, | |
} | |
#QTYPES = ["NF4"] if is_nf4 else [] | |
QTYPES = [] | |
def get_dtypes(): | |
return list(DTYPE_DICT.keys()) + [DTYPE_DEFAULT] + QTYPES | |
def get_dtype(dtype: str): | |
if dtype in set(QTYPES): return torch.bfloat16 | |
return DTYPE_DICT.get(dtype, torch.float16) | |
from diffusers import ( | |
DPMSolverMultistepScheduler, | |
DPMSolverSinglestepScheduler, | |
KDPM2DiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
HeunDiscreteScheduler, | |
LMSDiscreteScheduler, | |
DDIMScheduler, | |
DEISMultistepScheduler, | |
UniPCMultistepScheduler, | |
LCMScheduler, | |
PNDMScheduler, | |
KDPM2AncestralDiscreteScheduler, | |
DPMSolverSDEScheduler, | |
EDMDPMSolverMultistepScheduler, | |
DDPMScheduler, | |
EDMEulerScheduler, | |
TCDScheduler, | |
) | |
SCHEDULER_CONFIG_MAP = { | |
"DPM++ 2M": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": False}), | |
"DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": True}), | |
"DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}), | |
"DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}), | |
"DPM++ 2S": (DPMSolverSinglestepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": False}), | |
"DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"algorithm_type": "dpmsolver++", "use_karras_sigmas": True}), | |
"DPM++ 1S": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 1}), | |
"DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 1, "use_karras_sigmas": True}), | |
"DPM++ 3M": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 3}), | |
"DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "solver_order": 3, "use_karras_sigmas": True}), | |
"DPM 3M": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver", "final_sigmas_type": "sigma_min", "solver_order": 3}), | |
"DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}), | |
"DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}), | |
"DPM2": (KDPM2DiscreteScheduler, {}), | |
"DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}), | |
"DPM2 a": (KDPM2AncestralDiscreteScheduler, {}), | |
"DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}), | |
"Euler": (EulerDiscreteScheduler, {}), | |
"Euler a": (EulerAncestralDiscreteScheduler, {}), | |
"Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}), | |
"Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}), | |
"Heun": (HeunDiscreteScheduler, {}), | |
"Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}), | |
"LMS": (LMSDiscreteScheduler, {}), | |
"LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}), | |
"DDIM": (DDIMScheduler, {}), | |
"DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}), | |
"DEIS": (DEISMultistepScheduler, {}), | |
"UniPC": (UniPCMultistepScheduler, {}), | |
"UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}), | |
"PNDM": (PNDMScheduler, {}), | |
"Euler EDM": (EDMEulerScheduler, {}), | |
"Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}), | |
"DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}), | |
"DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}), | |
"DDPM": (DDPMScheduler, {}), | |
"DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "use_lu_lambdas": True}), | |
"DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "dpmsolver++", "euler_at_final": True}), | |
"DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}), | |
"DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}), | |
"LCM": (LCMScheduler, {}), | |
"TCD": (TCDScheduler, {}), | |
"LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}), | |
"TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}), | |
"LCM Auto-Loader": (LCMScheduler, {}), | |
"TCD Auto-Loader": (TCDScheduler, {}), | |
"EDM": (EDMDPMSolverMultistepScheduler, {}), | |
"EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True}), | |
"Euler (V-Prediction)": (EulerDiscreteScheduler, {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}), | |
"Euler a (V-Prediction)": (EulerAncestralDiscreteScheduler, {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}), | |
"Euler EDM (V-Prediction)": (EDMEulerScheduler, {"prediction_type": "v_prediction"}), | |
"Euler EDM Karras (V-Prediction)": (EDMEulerScheduler, {"use_karras_sigmas": True, "prediction_type": "v_prediction"}), | |
"DPM++ 2M EDM (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++", "prediction_type": "v_prediction"}), | |
"DPM++ 2M EDM Karras (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++", "prediction_type": "v_prediction"}), | |
"EDM (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"prediction_type": "v_prediction"}), | |
"EDM Karras (V-Prediction)": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "prediction_type": "v_prediction"}), | |
} | |
def get_scheduler_config(name: str): | |
if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"] | |
return SCHEDULER_CONFIG_MAP[name] | |
def fuse_loras(pipe, lora_dict: dict, temp_dir: str, civitai_key: str="", dkwargs: dict={}): | |
if not lora_dict or not isinstance(lora_dict, dict): return pipe | |
a_list = [] | |
w_list = [] | |
for k, v in lora_dict.items(): | |
if not k: continue | |
new_lora_file = get_download_file(temp_dir, k, civitai_key) | |
if not new_lora_file or not Path(new_lora_file).exists(): | |
print(f"LoRA file not found: {k}") | |
continue | |
w_name = Path(new_lora_file).name | |
a_name = Path(new_lora_file).stem | |
pipe.load_lora_weights(new_lora_file, weight_name=w_name, adapter_name=a_name, low_cpu_mem_usage=False, **dkwargs) | |
a_list.append(a_name) | |
w_list.append(v) | |
if Path(new_lora_file).exists(): Path(new_lora_file).unlink() | |
if len(a_list) == 0: return pipe | |
pipe.set_adapters(a_list, adapter_weights=w_list) | |
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0) | |
pipe.unload_lora_weights() | |
return pipe | |
MODEL_TYPE_KEY = { | |
"model.diffusion_model.output_blocks.1.1.norm.bias": "SDXL", | |
"model.diffusion_model.input_blocks.11.0.out_layers.3.weight": "SD 1.5", | |
"double_blocks.0.img_attn.norm.key_norm.scale": "FLUX", | |
"model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale": "FLUX", | |
"model.diffusion_model.joint_blocks.9.x_block.attn.ln_k.weight": "SD 3.5", | |
} | |
def get_model_type_from_key(path: str): | |
default = "SDXL" | |
try: | |
keys = read_safetensors_key(path) | |
for k, v in MODEL_TYPE_KEY.items(): | |
if k in set(keys): | |
print(f"Model type is {v}.") | |
return v | |
print("Model type could not be identified.") | |
except Exception: | |
return default | |
return default | |
def get_process_dtype(dtype: str, model_type: str): | |
if dtype in set(["fp8"] + QTYPES): return torch.bfloat16 if model_type in ["FLUX", "SD 3.5"] else torch.float16 | |
return DTYPE_DICT.get(dtype, torch.float16) | |