sdxl-to-diffusers-v32 / convert_url_to_diffusers_sdxl_gr.py
John6666's picture
Upload convert_url_to_diffusers_sdxl_gr.py
d2ce16f verified
raw
history blame
13.5 kB
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
import spaces
else:
class spaces:
@staticmethod
def GPU(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
import argparse
from pathlib import Path
import os
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from transformers import CLIPTokenizer, CLIPTextModel
import gradio as gr
import shutil
import gc
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
from utils import (set_token, is_repo_exists, is_repo_name, get_download_file, upload_repo)
@spaces.GPU
def fake_gpu():
pass
TEMP_DIR = "."
DTYPE_DICT = {
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp32": torch.float32,
"fp8": torch.float8_e4m3fn
}
def get_dtype(dtype: str):
return DTYPE_DICT.get(dtype, torch.float16)
from diffusers import (
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
KDPM2DiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
DDIMScheduler,
DEISMultistepScheduler,
UniPCMultistepScheduler,
LCMScheduler,
PNDMScheduler,
KDPM2AncestralDiscreteScheduler,
DPMSolverSDEScheduler,
EDMDPMSolverMultistepScheduler,
DDPMScheduler,
EDMEulerScheduler,
TCDScheduler,
)
SCHEDULER_CONFIG_MAP = {
"DPM++ 2M": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
"DPM++ 2M Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
"DPM++ 2M SDE": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
"DPM++ 2M SDE Karras": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
"DPM++ 2S": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
"DPM++ 2S Karras": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
"DPM++ 1S": (DPMSolverMultistepScheduler, {"solver_order": 1}),
"DPM++ 1S Karras": (DPMSolverMultistepScheduler, {"solver_order": 1, "use_karras_sigmas": True}),
"DPM++ 3M": (DPMSolverMultistepScheduler, {"solver_order": 3}),
"DPM++ 3M Karras": (DPMSolverMultistepScheduler, {"solver_order": 3, "use_karras_sigmas": True}),
"DPM++ SDE": (DPMSolverSDEScheduler, {"use_karras_sigmas": False}),
"DPM++ SDE Karras": (DPMSolverSDEScheduler, {"use_karras_sigmas": True}),
"DPM2": (KDPM2DiscreteScheduler, {}),
"DPM2 Karras": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
"DPM2 a": (KDPM2AncestralDiscreteScheduler, {}),
"DPM2 a Karras": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
"Euler": (EulerDiscreteScheduler, {}),
"Euler a": (EulerAncestralDiscreteScheduler, {}),
"Euler trailing": (EulerDiscreteScheduler, {"timestep_spacing": "trailing", "prediction_type": "sample"}),
"Euler a trailing": (EulerAncestralDiscreteScheduler, {"timestep_spacing": "trailing"}),
"Heun": (HeunDiscreteScheduler, {}),
"Heun Karras": (HeunDiscreteScheduler, {"use_karras_sigmas": True}),
"LMS": (LMSDiscreteScheduler, {}),
"LMS Karras": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
"DDIM": (DDIMScheduler, {}),
"DDIM trailing": (DDIMScheduler, {"timestep_spacing": "trailing"}),
"DEIS": (DEISMultistepScheduler, {}),
"UniPC": (UniPCMultistepScheduler, {}),
"UniPC Karras": (UniPCMultistepScheduler, {"use_karras_sigmas": True}),
"PNDM": (PNDMScheduler, {}),
"Euler EDM": (EDMEulerScheduler, {}),
"Euler EDM Karras": (EDMEulerScheduler, {"use_karras_sigmas": True}),
"DPM++ 2M EDM": (EDMDPMSolverMultistepScheduler, {"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
"DPM++ 2M EDM Karras": (EDMDPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"}),
"DDPM": (DDPMScheduler, {}),
"DPM++ 2M Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True}),
"DPM++ 2M Ef": (DPMSolverMultistepScheduler, {"euler_at_final": True}),
"DPM++ 2M SDE Lu": (DPMSolverMultistepScheduler, {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
"DPM++ 2M SDE Ef": (DPMSolverMultistepScheduler, {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
"LCM": (LCMScheduler, {}),
"TCD": (TCDScheduler, {}),
"LCM trailing": (LCMScheduler, {"timestep_spacing": "trailing"}),
"TCD trailing": (TCDScheduler, {"timestep_spacing": "trailing"}),
"LCM Auto-Loader": (LCMScheduler, {}),
"TCD Auto-Loader": (TCDScheduler, {}),
}
def get_scheduler_config(name):
if not name in SCHEDULER_CONFIG_MAP.keys(): return SCHEDULER_CONFIG_MAP["Euler a"]
return SCHEDULER_CONFIG_MAP[name]
def save_readme_md(dir, url):
orig_url = ""
orig_name = ""
if is_repo_name(url):
orig_name = url
orig_url = f"https://huggingface.co/{url}/"
elif "http" in url:
orig_name = url
orig_url = url
if orig_name and orig_url:
md = f"""---
license: other
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
---
Converted from [{orig_name}]({orig_url}).
"""
else:
md = f"""---
license: other
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
---
"""
path = str(Path(dir, "README.md"))
with open(path, mode='w', encoding="utf-8") as f:
f.write(md)
def fuse_loras(pipe, lora_dict={}, temp_dir=TEMP_DIR, civitai_key=""):
if not lora_dict or not isinstance(lora_dict, dict): return pipe
a_list = []
w_list = []
for k, v in lora_dict.items():
if not k: continue
new_lora_file = get_download_file(temp_dir, k, civitai_key)
if not new_lora_file or not Path(new_lora_file).exists():
print(f"LoRA not found: {k}")
continue
w_name = Path(new_lora_file).name
a_name = Path(new_lora_file).stem
pipe.load_lora_weights(new_lora_file, weight_name=w_name, adapter_name=a_name)
a_list.append(a_name)
w_list.append(v)
if not a_list: return pipe
pipe.set_adapters(a_list, adapter_weights=w_list)
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
pipe.unload_lora_weights()
return pipe
def convert_url_to_diffusers_sdxl(url, civitai_key="", is_upload_sf=False, dtype="fp16", vae="", clip="",
scheduler="Euler a", lora_dict={}, is_local=True, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Start converting...")
temp_dir = TEMP_DIR
new_file = get_download_file(temp_dir, url, civitai_key)
if not new_file:
print(f"Not found: {url}")
return ""
new_dir = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
kwargs = {}
type_kwargs = {}
if dtype != "default": type_kwargs["torch_dtype"] = get_dtype(dtype)
new_vae_file = ""
if vae:
if is_repo_name(vae): my_vae = AutoencoderKL.from_pretrained(vae, **type_kwargs)
else:
new_vae_file = get_download_file(temp_dir, vae, civitai_key)
my_vae = AutoencoderKL.from_single_file(new_vae_file, **type_kwargs) if new_vae_file else None
if my_vae: kwargs["vae"] = my_vae
if clip:
my_tokenizer = CLIPTokenizer.from_pretrained(clip)
if my_tokenizer: kwargs["tokenizer"] = my_tokenizer
my_text_encoder = CLIPTextModel.from_pretrained(clip, **type_kwargs)
if my_text_encoder: kwargs["text_encoder"] = my_text_encoder
pipe = None
if is_repo_name(url): pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, **kwargs, **type_kwargs)
else: pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, **kwargs, **type_kwargs)
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key)
sconf = get_scheduler_config(scheduler)
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
pipe.save_pretrained(new_dir, safe_serialization=True, use_safetensors=True)
if Path(new_dir).exists(): save_readme_md(new_dir, url)
if not is_local:
if not is_repo_name(new_file) and is_upload_sf: shutil.move(str(Path(new_file).resolve()), str(Path(new_dir, Path(new_file).name).resolve()))
else: os.remove(new_file)
del pipe
torch.cuda.empty_cache()
gc.collect()
progress(1, desc="Converted.")
return new_dir
def convert_url_to_diffusers_repo(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True, is_overwrite=False, is_upload_sf=False,
urls=[], dtype="fp16", vae="", clip="", scheduler="Euler a",
lora1=None, lora1s=1.0, lora2=None, lora2s=1.0, lora3=None, lora3s=1.0,
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
is_local = False
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY") # default Civitai API key
if not hf_token and os.environ.get("HF_TOKEN"): hf_token = os.environ.get("HF_TOKEN") # default HF write token
if not hf_user and os.environ.get("HF_USER"): hf_user = os.environ.get("HF_USER") # default username
if not hf_user: raise gr.Error(f"Invalid user name: {hf_user}")
if not hf_repo and os.environ.get("HF_REPO"): hf_repo = os.environ.get("HF_REPO") # default reponame
set_token(hf_token)
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key, is_upload_sf, dtype, vae, clip, scheduler, lora_dict, is_local)
if not new_path: return ""
new_repo_id = f"{hf_user}/{Path(new_path).stem}"
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
if not is_repo_name(new_repo_id): raise gr.Error(f"Invalid repo name: {new_repo_id}")
if not is_overwrite and is_repo_exists(new_repo_id): raise gr.Error(f"Repo already exists: {new_repo_id}")
repo_url = upload_repo(new_repo_id, new_path, is_private)
shutil.rmtree(new_path)
if not urls: urls = []
urls.append(repo_url)
md = "### Your new repo:\n"
for u in urls:
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
return gr.update(value=urls, choices=urls), gr.update(value=md)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--url", default=None, type=str, required=True, help="URL of the model to convert.")
parser.add_argument("--dtype", default="fp16", type=str, choices=["fp16", "fp32", "bf16", "fp8", "default"], help='Output data type. (Default: "fp16")')
parser.add_argument("--scheduler", default="Euler a", type=str, choices=list(SCHEDULER_CONFIG_MAP.keys()), required=False, help="Scheduler name to use.")
parser.add_argument("--vae", default=None, type=str, required=False, help="URL of the VAE to use.")
parser.add_argument("--civitai_key", default=None, type=str, required=False, help="Civitai API Key (If you want to download file from Civitai).")
parser.add_argument("--lora1", default=None, type=str, required=False, help="URL of the LoRA to use.")
parser.add_argument("--lora1s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora1.")
parser.add_argument("--lora2", default=None, type=str, required=False, help="URL of the LoRA to use.")
parser.add_argument("--lora2s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora2.")
parser.add_argument("--lora3", default=None, type=str, required=False, help="URL of the LoRA to use.")
parser.add_argument("--lora3s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora3.")
parser.add_argument("--lora4", default=None, type=str, required=False, help="URL of the LoRA to use.")
parser.add_argument("--lora4s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora4.")
parser.add_argument("--lora5", default=None, type=str, required=False, help="URL of the LoRA to use.")
parser.add_argument("--lora5s", default=1.0, type=float, required=False, help="LoRA weight scale of --lora5.")
parser.add_argument("--loras", default=None, type=str, required=False, help="Folder of the LoRA to use.")
args = parser.parse_args()
assert args.url is not None, "Must provide a URL!"
is_local = True
lora_dict = {args.lora1: args.lora1s, args.lora2: args.lora2s, args.lora3: args.lora3s, args.lora4: args.lora4s, args.lora5: args.lora5s}
if args.loras and Path(args.loras).exists():
for p in Path(args.loras).glob('**/*.safetensors'):
lora_dict[str(p)] = 1.0
clip = ""
convert_url_to_diffusers_sdxl(args.url, args.civitai_key, args.dtype, args.vae, clip, args.scheduler, lora_dict, is_local)