Changes in app.py
Browse files- app.py +8 -21
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
from transformers import AutoTokenizer, pipeline
|
10 |
-
|
11 |
-
model_name = "glaiveai/Llama-3-8B-RAG-v1"
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
|
14 |
# Example user query
|
15 |
user_query = """Document:0
|
@@ -35,6 +32,9 @@ chat = [
|
|
35 |
]
|
36 |
|
37 |
|
|
|
|
|
|
|
38 |
def respond(
|
39 |
message,
|
40 |
history: list[tuple[str, str]],
|
@@ -55,24 +55,11 @@ def respond(
|
|
55 |
messages.append({"role": "system", "content": val[1]})
|
56 |
|
57 |
messages.append({"role": "user", "content": message})
|
58 |
-
|
59 |
-
response = ""
|
60 |
-
|
61 |
-
prompt = tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True)
|
62 |
-
pipe = pipeline('text-generation', model= model_name, tokenizer=model_name, device=0)
|
63 |
-
output = pipe(prompt,
|
64 |
-
max_length=1000,
|
65 |
-
num_return_sequences=1,
|
66 |
-
top_k=50,
|
67 |
-
top_p=top_p,
|
68 |
-
temperature=temperature,
|
69 |
-
do_sample=True,
|
70 |
-
return_full_text=False
|
71 |
-
)
|
72 |
|
73 |
-
response = output[0]['generated_text']
|
74 |
|
75 |
-
|
|
|
76 |
|
77 |
|
78 |
# for message in client.chat_completion(
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
import google.generativeai as genai
|
5 |
"""
|
6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
"""
|
8 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Example user query
|
12 |
user_query = """Document:0
|
|
|
32 |
]
|
33 |
|
34 |
|
35 |
+
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
|
36 |
+
|
37 |
+
model = genai.GenerativeModel("gemini-pro-vision")
|
38 |
def respond(
|
39 |
message,
|
40 |
history: list[tuple[str, str]],
|
|
|
55 |
messages.append({"role": "system", "content": val[1]})
|
56 |
|
57 |
messages.append({"role": "user", "content": message})
|
58 |
+
response = model.generate_content(messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
60 |
|
61 |
+
print(response)
|
62 |
+
return response
|
63 |
|
64 |
|
65 |
# for message in client.chat_completion(
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
huggingface_hub==0.22.2
|
2 |
transformers
|
3 |
-
torch
|
|
|
|
1 |
huggingface_hub==0.22.2
|
2 |
transformers
|
3 |
+
torch
|
4 |
+
google-generativeai
|