Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import json | |
| import logging | |
| import os | |
| import pathlib | |
| import re | |
| from copy import deepcopy | |
| from pathlib import Path | |
| # from turtle import forward | |
| from typing import Any, Dict, Optional, Tuple, Union | |
| import torch | |
| from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
| from .model import CLIP, CustomTextCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\ | |
| resize_pos_embed, get_cast_dtype | |
| from .coca_model import CoCa | |
| from .loss import ClipLoss, DistillClipLoss, CoCaLoss | |
| from .openai import load_openai_model | |
| from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model, download_pretrained_from_hf | |
| from .transform import image_transform, AugmentationCfg | |
| from .tokenizer import HFTokenizer, SimpleTokenizer | |
| HF_HUB_PREFIX = 'hf-hub:' | |
| _MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] | |
| _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs | |
| def _natural_key(string_): | |
| return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] | |
| def _rescan_model_configs(): | |
| global _MODEL_CONFIGS | |
| config_ext = ('.json',) | |
| config_files = [] | |
| for config_path in _MODEL_CONFIG_PATHS: | |
| if config_path.is_file() and config_path.suffix in config_ext: | |
| config_files.append(config_path) | |
| elif config_path.is_dir(): | |
| for ext in config_ext: | |
| config_files.extend(config_path.glob(f'*{ext}')) | |
| for cf in config_files: | |
| with open(cf, 'r') as f: | |
| model_cfg = json.load(f) | |
| if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): | |
| _MODEL_CONFIGS[cf.stem] = model_cfg | |
| _MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} | |
| _rescan_model_configs() # initial populate of model config registry | |
| def list_models(): | |
| """ enumerate available model architectures based on config files """ | |
| return list(_MODEL_CONFIGS.keys()) | |
| def add_model_config(path): | |
| """ add model config path or file and update registry """ | |
| if not isinstance(path, Path): | |
| path = Path(path) | |
| _MODEL_CONFIG_PATHS.append(path) | |
| _rescan_model_configs() | |
| def get_model_config(model_name): | |
| if model_name in _MODEL_CONFIGS: | |
| return deepcopy(_MODEL_CONFIGS[model_name]) | |
| else: | |
| return None | |
| def get_tokenizer(model_name, open_clip_bpe_path=None): | |
| if model_name.startswith(HF_HUB_PREFIX): | |
| tokenizer = HFTokenizer(model_name[len(HF_HUB_PREFIX):]) | |
| else: | |
| config = get_model_config(model_name) | |
| tokenizer = HFTokenizer( | |
| config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else SimpleTokenizer(open_clip_bpe_path) | |
| return tokenizer | |
| def load_state_dict(checkpoint_path: str, map_location='cpu'): | |
| checkpoint = torch.load(checkpoint_path, map_location=map_location) | |
| if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: | |
| state_dict = checkpoint['state_dict'] | |
| else: | |
| state_dict = checkpoint | |
| if next(iter(state_dict.items()))[0].startswith('module'): | |
| state_dict = {k[7:]: v for k, v in state_dict.items()} | |
| return state_dict | |
| def load_checkpoint(model, checkpoint_path, strict=True): | |
| state_dict = load_state_dict(checkpoint_path) | |
| # detect old format and make compatible with new format | |
| if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'): | |
| state_dict = convert_to_custom_text_state_dict(state_dict) | |
| resize_pos_embed(state_dict, model) | |
| incompatible_keys = model.load_state_dict(state_dict, strict=strict) | |
| return incompatible_keys | |
| def create_model( | |
| model_name: str, | |
| pretrained: Optional[str] = None, | |
| precision: str = 'fp32', | |
| device: Union[str, torch.device] = 'cpu', | |
| jit: bool = False, | |
| force_quick_gelu: bool = False, | |
| force_custom_text: bool = False, | |
| force_patch_dropout: Optional[float] = None, | |
| force_image_size: Optional[Union[int, Tuple[int, int]]] = None, | |
| pretrained_image: bool = False, | |
| pretrained_hf: bool = True, | |
| cache_dir: Optional[str] = None, | |
| output_dict: Optional[bool] = None, | |
| require_pretrained: bool = False, | |
| ): | |
| has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX) | |
| if has_hf_hub_prefix: | |
| model_id = model_name[len(HF_HUB_PREFIX):] | |
| checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir) | |
| config_path = download_pretrained_from_hf(model_id, filename='open_clip_config.json', cache_dir=cache_dir) | |
| with open(config_path, 'r', encoding='utf-8') as f: | |
| config = json.load(f) | |
| pretrained_cfg = config['preprocess_cfg'] | |
| model_cfg = config['model_cfg'] | |
| else: | |
| model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names | |
| checkpoint_path = None | |
| pretrained_cfg = {} | |
| model_cfg = None | |
| if isinstance(device, str): | |
| device = torch.device(device) | |
| if pretrained and pretrained.lower() == 'openai': | |
| logging.info(f'Loading pretrained {model_name} from OpenAI.') | |
| model = load_openai_model( | |
| model_name, | |
| precision=precision, | |
| device=device, | |
| jit=jit, | |
| cache_dir=cache_dir, | |
| ) | |
| # to always output dict even if it is clip | |
| if output_dict and hasattr(model, "output_dict"): | |
| model.output_dict = True | |
| else: | |
| model_cfg = model_cfg or get_model_config(model_name) | |
| if model_cfg is not None: | |
| logging.info(f'Loaded {model_name} model config.') | |
| else: | |
| logging.error(f'Model config for {model_name} not found; available models {list_models()}.') | |
| raise RuntimeError(f'Model config for {model_name} not found.') | |
| if force_quick_gelu: | |
| # override for use of QuickGELU on non-OpenAI transformer models | |
| model_cfg["quick_gelu"] = True | |
| if force_patch_dropout is not None: | |
| # override the default patch dropout value | |
| model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout | |
| if force_image_size is not None: | |
| # override model config's image size | |
| model_cfg["vision_cfg"]["image_size"] = force_image_size | |
| if pretrained_image: | |
| if 'timm_model_name' in model_cfg.get('vision_cfg', {}): | |
| # pretrained weight loading for timm models set via vision_cfg | |
| model_cfg['vision_cfg']['timm_model_pretrained'] = True | |
| else: | |
| assert False, 'pretrained image towers currently only supported for timm models' | |
| cast_dtype = get_cast_dtype(precision) | |
| is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {}) | |
| custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model | |
| if custom_text: | |
| if is_hf_model: | |
| model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf | |
| if "coca" in model_name: | |
| model = CoCa(**model_cfg, cast_dtype=cast_dtype) | |
| else: | |
| model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype) | |
| else: | |
| model = CLIP(**model_cfg, cast_dtype=cast_dtype) | |
| pretrained_loaded = False | |
| if pretrained: | |
| checkpoint_path = '' | |
| pretrained_cfg = get_pretrained_cfg(model_name, pretrained) | |
| if pretrained_cfg: | |
| checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) | |
| elif os.path.exists(pretrained): | |
| checkpoint_path = pretrained | |
| if checkpoint_path: | |
| logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') | |
| load_checkpoint(model, checkpoint_path) | |
| else: | |
| error_str = ( | |
| f'Pretrained weights ({pretrained}) not found for model {model_name}.' | |
| f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.') | |
| logging.warning(error_str) | |
| raise RuntimeError(error_str) | |
| pretrained_loaded = True | |
| elif has_hf_hub_prefix: | |
| logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') | |
| load_checkpoint(model, checkpoint_path) | |
| pretrained_loaded = True | |
| if require_pretrained and not pretrained_loaded: | |
| # callers of create_model_from_pretrained always expect pretrained weights | |
| raise RuntimeError( | |
| f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.') | |
| model.to(device=device) | |
| if precision in ("fp16", "bf16"): | |
| convert_weights_to_lp(model, dtype=torch.bfloat16 if precision == 'bf16' else torch.float16) | |
| # set image / mean metadata from pretrained_cfg if available, or use default | |
| model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN | |
| model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD | |
| # to always output dict even if it is clip | |
| if output_dict and hasattr(model, "output_dict"): | |
| model.output_dict = True | |
| if jit: | |
| model = torch.jit.script(model) | |
| return model | |
| def create_loss(args): | |
| if args.distill: | |
| return DistillClipLoss( | |
| local_loss=args.local_loss, | |
| gather_with_grad=args.gather_with_grad, | |
| cache_labels=True, | |
| rank=args.rank, | |
| world_size=args.world_size, | |
| use_horovod=args.horovod, | |
| ) | |
| elif "coca" in args.model.lower(): | |
| return CoCaLoss( | |
| caption_loss_weight=args.coca_caption_loss_weight, | |
| clip_loss_weight=args.coca_contrastive_loss_weight, | |
| local_loss=args.local_loss, | |
| gather_with_grad=args.gather_with_grad, | |
| cache_labels=True, | |
| rank=args.rank, | |
| world_size=args.world_size, | |
| use_horovod=args.horovod, | |
| ) | |
| return ClipLoss( | |
| local_loss=args.local_loss, | |
| gather_with_grad=args.gather_with_grad, | |
| cache_labels=True, | |
| rank=args.rank, | |
| world_size=args.world_size, | |
| use_horovod=args.horovod, | |
| ) | |
| class MLP(torch.nn.Module): | |
| def __init__(self, input_size): | |
| super().__init__() | |
| self.input_size = input_size | |
| self.layers = torch.nn.Sequential( | |
| torch.nn.Linear(self.input_size, 1024), | |
| torch.nn.Dropout(0.2), | |
| torch.nn.Linear(1024, 128), | |
| torch.nn.Dropout(0.2), | |
| torch.nn.Linear(128, 64), | |
| torch.nn.Dropout(0.1), | |
| torch.nn.Linear(64, 16), | |
| torch.nn.Linear(16, 1) | |
| ) | |
| def forward(self, x): | |
| return self.layers(x) | |
| # class semantic_head(torch.nn.Module): | |
| # def __init__(self, input_size): | |
| # super().__init__() | |
| # self.input_size = input_size # for ViT-L-14 is 1024 | |
| # self.seg_head = torch.nn.Sequential( | |
| # torch.nn.Linear(input_size, 128), | |
| # torch.nn.Dropout(0.2), | |
| # torch.nn.Linear(128, 64), | |
| # torch.nn.Dropout(0.1), | |
| # torch.nn.Linear(64, 16), | |
| # torch.nn.Linear(16, 1), | |
| # ) | |
| # self.sigmoid = torch.nn.Sigmoid() | |
| # def forward(self, x): | |
| # return self.sigmoid(self.seg_head(x)) | |
| def create_model_and_transforms( | |
| model_name: str, | |
| pretrained: Optional[str] = None, | |
| precision: str = 'fp32', | |
| device: Union[str, torch.device] = 'cpu', | |
| jit: bool = False, | |
| force_quick_gelu: bool = False, | |
| force_custom_text: bool = False, | |
| force_patch_dropout: Optional[float] = None, | |
| force_image_size: Optional[Union[int, Tuple[int, int]]] = None, | |
| pretrained_image: bool = False, | |
| pretrained_hf: bool = True, | |
| image_mean: Optional[Tuple[float, ...]] = None, | |
| image_std: Optional[Tuple[float, ...]] = None, | |
| aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None, | |
| cache_dir: Optional[str] = None, | |
| light_augmentation = False, | |
| output_dict: Optional[bool] = None, | |
| with_score_predictor: bool = False, | |
| with_region_predictor: bool = False | |
| ): | |
| model = create_model( | |
| model_name, | |
| pretrained, | |
| precision=precision, | |
| device=device, | |
| jit=jit, | |
| force_quick_gelu=force_quick_gelu, | |
| force_custom_text=force_custom_text, | |
| force_patch_dropout=force_patch_dropout, | |
| force_image_size=force_image_size, | |
| pretrained_image=pretrained_image, | |
| pretrained_hf=pretrained_hf, | |
| cache_dir=cache_dir, | |
| output_dict=output_dict, | |
| ) | |
| image_mean = image_mean or getattr(model.visual, 'image_mean', None) | |
| image_std = image_std or getattr(model.visual, 'image_std', None) | |
| if with_score_predictor: | |
| model.score_predictor = MLP(model.visual.proj.size(1)).to(device=device, dtype=model.visual.proj.dtype) | |
| if with_region_predictor: | |
| # model.region_predictor = semantic_head(model.visual.proj.size(1)).to(device=device, dtype=model.visual.proj.dtype) | |
| model.region_predictor = torch.nn.Linear(model.visual.proj.size(0), 1).to(device=device, dtype=model.visual.proj.dtype) | |
| # preprocess_train = image_transform_region( | |
| # model.visual.image_size, | |
| # is_train=True, | |
| # mean=image_mean, | |
| # std=image_std | |
| # ) | |
| # preprocess_val = image_transform_region( | |
| # model.visual.image_size, | |
| # is_train=False, | |
| # mean=image_mean, | |
| # std=image_std | |
| # ) | |
| if light_augmentation: | |
| preprocess_val = image_transform( | |
| model.visual.image_size, | |
| is_train=False, | |
| mean=image_mean, | |
| std=image_std, | |
| resize_longest_max=True, | |
| ) | |
| preprocess_train = preprocess_val | |
| else: | |
| preprocess_train = image_transform( | |
| model.visual.image_size, | |
| is_train=True, | |
| mean=image_mean, | |
| std=image_std | |
| ) | |
| preprocess_val = image_transform( | |
| model.visual.image_size, | |
| is_train=False, | |
| mean=image_mean, | |
| std=image_std | |
| ) | |
| return model, preprocess_train, preprocess_val | |
| def create_model_from_pretrained( | |
| model_name: str, | |
| pretrained: Optional[str] = None, | |
| precision: str = 'fp32', | |
| device: Union[str, torch.device] = 'cpu', | |
| jit: bool = False, | |
| force_quick_gelu: bool = False, | |
| force_custom_text: bool = False, | |
| force_image_size: Optional[Union[int, Tuple[int, int]]] = None, | |
| return_transform: bool = True, | |
| image_mean: Optional[Tuple[float, ...]] = None, | |
| image_std: Optional[Tuple[float, ...]] = None, | |
| cache_dir: Optional[str] = None, | |
| ): | |
| model = create_model( | |
| model_name, | |
| pretrained, | |
| precision=precision, | |
| device=device, | |
| jit=jit, | |
| force_quick_gelu=force_quick_gelu, | |
| force_custom_text=force_custom_text, | |
| force_image_size=force_image_size, | |
| cache_dir=cache_dir, | |
| require_pretrained=True, | |
| ) | |
| if not return_transform: | |
| return model | |
| image_mean = image_mean or getattr(model.visual, 'image_mean', None) | |
| image_std = image_std or getattr(model.visual, 'image_std', None) | |
| preprocess = image_transform( | |
| model.visual.image_size, | |
| is_train=False, | |
| mean=image_mean, | |
| std=image_std, | |
| ) | |
| return model, preprocess | |

