import os import subprocess import sys import warnings import logging if os.environ.get("SPACES_ZERO_GPU") is not None: import spaces else: class spaces: @staticmethod def GPU(*decorator_args, **decorator_kwargs): def decorator(func): def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper return decorator import difflib # Configure logging settings logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) def _get_output(cmd): try: return subprocess.check_output(cmd).decode("utf-8") except Exception as ex: logging.exception(ex) return None def install_cuda_toolkit(): CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run" CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) print(f"[INFO] Downloading CUDA Toolkit from {CUDA_TOOLKIT_URL} ...") subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) print("[INFO] Installing CUDA Toolkit silently ...") subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) print("[INFO] Setting CUDA environment variables ...") os.environ["CUDA_HOME"] = "/usr/local/cuda" os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ.get("PATH", "")) os.environ["LD_LIBRARY_PATH"] = "%s/lib64:%s" % ( os.environ["CUDA_HOME"], os.environ.get("LD_LIBRARY_PATH", "") ) # Optional: set architecture list for compilation (Ampere and Ada) os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9" if os.path.exists(CUDA_TOOLKIT_FILE): os.remove(CUDA_TOOLKIT_FILE) print(f"[INFO] Removed installer file: {CUDA_TOOLKIT_FILE}") else: print(f"[WARN] Installer file not found: {CUDA_TOOLKIT_FILE}") print(os.listdir("/usr/local/cuda")) print("[INFO] CUDA 12.1 installation complete. CUDA_HOME set to /usr/local/cuda") logging.info("Environment Variables: %s" % os.environ) logging.info("Installing CUDA extensions...") if _get_output(["nvcc", "--version"]) is None: logging.info("Installing CUDA toolkit...") install_cuda_toolkit() logging.info("installCUDA: %s" % _get_output(["nvcc", "--version"])) else: logging.info("Detected CUDA: %s" % _get_output(["nvcc", "--version"])) import torch import argparse import json import random from datetime import datetime import torch import numpy as np import cv2 from PIL import Image from tqdm import tqdm from natsort import natsorted, ns from einops import rearrange from omegaconf import OmegaConf from huggingface_hub import snapshot_download import gradio as gr import base64 import imageio_ffmpeg as ffmpeg import subprocess from different_domain_imge_gen.landmark_generation import generate_annotation from transformers import ( Dinov2Model, CLIPImageProcessor, CLIPVisionModelWithProjection, AutoImageProcessor ) from Next3d.training_avatar_texture.camera_utils import LookAtPoseSampler, FOV_to_intrinsics import recon.dnnlib as dnnlib import recon.legacy as legacy from DiT_VAE.diffusion.utils.misc import read_config from DiT_VAE.vae.triplane_vae import AutoencoderKL as AutoencoderKLTriplane from DiT_VAE.diffusion import IDDPM, DPMS from DiT_VAE.diffusion.model.nets import TriDitCLIPDINO_XL_2 from DiT_VAE.diffusion.data.datasets import get_chunks # Get the directory of the current script father_path = os.path.dirname(os.path.abspath(__file__)) # Add necessary paths dynamically sys.path.extend([ os.path.join(father_path, 'recon'), os.path.join(father_path, 'Next3d'), os.path.join(father_path, 'data_process'), os.path.join(father_path, 'data_process/lib') ]) from lib.FaceVerse.renderer import Faceverse_manager from data_process.input_img_align_extract_ldm_demo import Process from lib.config.config_demo import cfg import shutil # Suppress warnings (especially for PyTorch) warnings.filterwarnings("ignore") os.environ["MEDIAPIPE_DISABLE_GPU"] = "1" # Disable GPU for MediaPipe # 🔧 Set CUDA_HOME before anything else # os.system("pip uninstall diffusers") # os.system("pip install diffusers==0.20.1") from diffusers import ( StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DPMSolverMultistepScheduler, ) def get_args(): """Parse and return command-line arguments.""" parser = argparse.ArgumentParser(description="4D Triplane Generation Arguments") # Configuration and model checkpoints parser.add_argument("--config", type=str, default="./configs/infer_config.py", help="Path to the configuration file.") # Generation parameters parser.add_argument("--bs", type=int, default=1, help="Batch size for processing.") parser.add_argument("--cfg_scale", type=float, default=4.5, help="CFG scale parameter.") parser.add_argument("--sampling_algo", type=str, default="dpm-solver", choices=["iddpm", "dpm-solver"], help="Sampling algorithm to be used.") parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility.") # parser.add_argument("--select_img", type=str, default=None, # help="Optional: Select a specific image.") parser.add_argument('--step', default=-1, type=int) # parser.add_argument('--use_demo_cam', action='store_true', help="Enable predefined camera parameters") return parser.parse_args() def set_env(seed=0): """Set random seed for reproducibility across multiple frameworks.""" torch.manual_seed(seed) # Set PyTorch seed torch.cuda.manual_seed_all(seed) # If using multi-GPU np.random.seed(seed) # Set NumPy seed random.seed(seed) # Set Python built-in random module seed torch.set_grad_enabled(False) # Disable gradients for inference def to_rgb_image(image: Image.Image): """Convert an image to RGB format if necessary.""" if image.mode == 'RGB': return image elif image.mode == 'RGBA': img = Image.new("RGB", image.size, (127, 127, 127)) img.paste(image, mask=image.getchannel('A')) return img else: raise ValueError(f"Unsupported image type: {image.mode}") def image_process(image_path, clip_image_processor, dino_img_processor, device): """Preprocess an image for CLIP and DINO models.""" image = to_rgb_image(Image.open(image_path)) clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values.to(device) dino_image = dino_img_processor(images=image, return_tensors="pt").pixel_values.to(device) return dino_image, clip_image # def video_gen(frames_dir, output_path, fps=30): # """Generate a video from image frames.""" # frame_files = natsorted(os.listdir(frames_dir), alg=ns.PATH) # frames = [cv2.imread(os.path.join(frames_dir, f)) for f in frame_files] # H, W = frames[0].shape[:2] # video_writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'MP4V'), fps, (W, H)) # for frame in frames: # video_writer.write(frame) # video_writer.release() def trans(tensor_img): img = (tensor_img.permute(0, 2, 3, 1) * 0.5 + 0.5).clamp(0, 1) * 255. img = img.to(torch.uint8) img = img[0].detach().cpu().numpy() return img def get_vert(vert_dir): uvcoords_image = np.load(os.path.join(vert_dir))[..., :3] uvcoords_image[..., -1][uvcoords_image[..., -1] < 0.5] = 0 uvcoords_image[..., -1][uvcoords_image[..., -1] >= 0.5] = 1 return torch.tensor(uvcoords_image.copy()).float().unsqueeze(0) def generate_samples(DiT_model, cfg_scale, sample_steps, clip_feature, dino_feature, uncond_clip_feature, uncond_dino_feature, device, latent_size, sampling_algo): """ Generate latent samples using the specified diffusion model. Args: DiT_model (torch.nn.Module): The diffusion model. cfg_scale (float): The classifier-free guidance scale. sample_steps (int): Number of sampling steps. clip_feature (torch.Tensor): CLIP feature tensor. dino_feature (torch.Tensor): DINO feature tensor. uncond_clip_feature (torch.Tensor): Unconditional CLIP feature tensor. uncond_dino_feature (torch.Tensor): Unconditional DINO feature tensor. device (str): Device for computation. latent_size (tuple): The latent space size. sampling_algo (str): The sampling algorithm ('iddpm' or 'dpm-solver'). Returns: torch.Tensor: The generated samples. """ n = 1 # Batch size z = torch.randn(n, 8, latent_size[0], latent_size[1], device=device) if sampling_algo == 'iddpm': z = z.repeat(2, 1, 1, 1) # Duplicate for classifier-free guidance model_kwargs = dict(y=torch.cat([clip_feature, uncond_clip_feature]), img_feature=torch.cat([dino_feature, dino_feature]), cfg_scale=cfg_scale) diffusion = IDDPM(str(sample_steps)) samples = diffusion.p_sample_loop(DiT_model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device) samples, _ = samples.chunk(2, dim=0) # Remove unconditional samples elif sampling_algo == 'dpm-solver': dpm_solver = DPMS(DiT_model.forward_with_dpmsolver, condition=[clip_feature, dino_feature], uncondition=[uncond_clip_feature, dino_feature], cfg_scale=cfg_scale) samples = dpm_solver.sample(z, steps=sample_steps, order=2, skip_type="time_uniform", method="multistep") else: raise ValueError(f"Invalid sampling_algo '{sampling_algo}'. Choose either 'iddpm' or 'dpm-solver'.") return samples def load_motion_aware_render_model(ckpt_path, device): """Load the motion-aware render model from a checkpoint.""" logging.info("Loading motion-aware render model...") with dnnlib.util.open_url(ckpt_path, 'rb') as f: network = legacy.load_network_pkl(f) # type: ignore logging.info("Motion-aware render model loaded.") return network['G_ema'].to(device) def load_diffusion_model(ckpt_path, latent_size, device): """Load the diffusion model (DiT).""" logging.info("Loading diffusion model (DiT)...") DiT_model = TriDitCLIPDINO_XL_2(input_size=latent_size).to(device) ckpt = torch.load(ckpt_path, map_location="cpu") # Remove keys that can cause mismatches for key in ['pos_embed', 'base_model.pos_embed', 'model.pos_embed']: ckpt['state_dict'].pop(key, None) ckpt.get('state_dict_ema', {}).pop(key, None) state_dict = ckpt.get('state_dict_ema', ckpt) DiT_model.load_state_dict(state_dict, strict=False) DiT_model.eval() logging.info("Diffusion model (DiT) loaded.") return DiT_model def load_vae_clip_dino(config, device): """Load VAE, CLIP, and DINO models.""" logging.info("Loading VAE, CLIP, and DINO models...") # Load CLIP image encoder image_encoder = CLIPVisionModelWithProjection.from_pretrained( config.image_encoder_path) image_encoder.requires_grad_(False) image_encoder.to(device) # Load VAE config_vae = OmegaConf.load(config.vae_triplane_config_path) vae_triplane = AutoencoderKLTriplane(ddconfig=config_vae['ddconfig'], lossconfig=None, embed_dim=8) vae_triplane.to(device) vae_ckpt_path = os.path.join(config.vae_pretrained, 'pytorch_model.bin') if not os.path.isfile(vae_ckpt_path): raise RuntimeError(f"VAE checkpoint not found at {vae_ckpt_path}") vae_triplane.load_state_dict(torch.load(vae_ckpt_path, map_location="cpu")) vae_triplane.requires_grad_(False) # Load DINO model dinov2 = Dinov2Model.from_pretrained(config.dino_pretrained) dinov2.requires_grad_(False) dinov2.to(device) # Load image processors dino_img_processor = AutoImageProcessor.from_pretrained(config.dino_pretrained) clip_image_processor = CLIPImageProcessor() logging.info("VAE, CLIP, and DINO models loaded.") return vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor def prepare_working_dir(dir, style): print('stylestylestylestylestylestylestyle',style) if style: return dir else: import tempfile working_dir = tempfile.TemporaryDirectory() return working_dir.name def launch_pretrained(): from huggingface_hub import snapshot_download os.system("pip uninstall torch") os.system("pip uninstall torchvision") os.system("pip install https://download.pytorch.org/whl/cu121/torch-2.4.1%2Bcu121-cp310-cp310-linux_x86_64.whl") os.system("pip install https://download.pytorch.org/whl/cu121/torchvision-0.19.1%2Bcu121-cp310-cp310-linux_x86_64.whl") snapshot_download( repo_id="KumaPower/AvatarArtist", repo_type="model", local_dir="./pretrained_model", local_dir_use_symlinks=False ) snapshot_download( repo_id="stabilityai/stable-diffusion-2-1-base", repo_type="model", local_dir="./pretrained_model/sd21", local_dir_use_symlinks=False ) logging.info("delete models.") os.remove('./pretrained_model/sd21/v2-1_512-ema-pruned.ckpt') os.remove('./pretrained_model/sd21/v2-1_512-nonema-pruned.ckpt') # 下载 CrucibleAI/ControlNetMediaPipeFace 的所有文件 snapshot_download( repo_id="CrucibleAI/ControlNetMediaPipeFace", repo_type="model", local_dir="./pretrained_model/control", local_dir_use_symlinks=False ) def prepare_image_list(img_dir, selected_img): """Prepare the list of image paths for processing.""" if selected_img and selected_img in os.listdir(img_dir): return [os.path.join(img_dir, selected_img)] return sorted([os.path.join(img_dir, img) for img in os.listdir(img_dir)]) def images_to_video(image_folder, output_video, fps=30): # Get all image files and ensure correct order images = [img for img in os.listdir(image_folder) if img.endswith((".png", ".jpg", ".jpeg"))] images = natsorted(images) # Sort filenames naturally to preserve frame order if not images: print("❌ No images found in the directory!") return # Get the path to the FFmpeg executable ffmpeg_exe = ffmpeg.get_ffmpeg_exe() print(f"Using FFmpeg from: {ffmpeg_exe}") # Define input image pattern (expects images named like "%04d.png") image_pattern = os.path.join(image_folder, "%04d.png") # FFmpeg command to encode video (with -y to overwrite) command = [ ffmpeg_exe, '-y', # ✅ Overwrite output file without asking '-framerate', str(fps), '-i', image_pattern, '-c:v', 'libx264', '-preset', 'slow', '-crf', '18', '-pix_fmt', 'yuv420p', '-b:v', '5000k', output_video ] # Run FFmpeg command subprocess.run(command, check=True) print(f"✅ High-quality MP4 video has been generated: {output_video}") def model_define(): args = get_args() set_env(args.seed) input_process_model = Process(cfg) device = "cuda" if torch.cuda.is_available() else "cpu" weight_dtype = torch.float32 logging.info(f"Running inference with {weight_dtype}") # Load configuration default_config = read_config(args.config) # Ensure valid sampling algorithm assert args.sampling_algo in ['iddpm', 'dpm-solver', 'sa-solver'] # Load motion-aware render model motion_aware_render_model = load_motion_aware_render_model(default_config.motion_aware_render_model_ckpt, device) # Load diffusion model (DiT) triplane_size = (256 * 4, 256) latent_size = (triplane_size[0] // 8, triplane_size[1] // 8) sample_steps = args.step if args.step != -1 else {'iddpm': 100, 'dpm-solver': 20, 'sa-solver': 25}[ args.sampling_algo] DiT_model = load_diffusion_model(default_config.DiT_model_ckpt, latent_size, device) # Load VAE, CLIP, and DINO vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor = load_vae_clip_dino(default_config, device) # Load normalization parameters triplane_std = torch.load(default_config.std_dir).to(device).reshape(1, -1, 1, 1, 1) triplane_mean = torch.load(default_config.mean_dir).to(device).reshape(1, -1, 1, 1, 1) # Load average latent vector ws_avg = torch.load(default_config.ws_avg_pkl).to(device)[0] return motion_aware_render_model, sample_steps, DiT_model, \ vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, triplane_std, triplane_mean, ws_avg, device, input_process_model def duplicate_batch(tensor, batch_size=2): if tensor is None: return None # 如果是 None,则直接返回 return tensor.repeat(batch_size, *([1] * (tensor.dim() - 1))) # 复制 batch 维度 @torch.no_grad() @spaces.GPU(duration=200) def avatar_generation(items, save_path_base, video_path_input, source_type, is_styled, styled_img, image_name_true): """ Generate avatars from input images. Args: items (list): List of image paths. bs (int): Batch size. sample_steps (int): Number of sampling steps. cfg_scale (float): Classifier-free guidance scale. save_path_base (str): Base directory for saving results. DiT_model (torch.nn.Module): The diffusion model. render_model (torch.nn.Module): The rendering model. std (torch.Tensor): Standard deviation normalization tensor. mean (torch.Tensor): Mean normalization tensor. ws_avg (torch.Tensor): Latent average tensor. """ try: if is_styled: items = [styled_img] else: items = [items] video_folder = "./demo_data/target_video" video_name = os.path.basename(video_path_input).split(".")[0] target_path = os.path.join(video_folder, 'data_' + video_name) exp_base_dir = os.path.join(target_path, 'coeffs') exp_img_base_dir = os.path.join(target_path, 'images512x512') motion_base_dir = os.path.join(target_path, 'motions') label_file_test = os.path.join(target_path, 'images512x512/dataset_realcam.json') # render_model.to(device) # image_encoder.to(device) # vae_triplane.to(device) # dinov2.to(device) # ws_avg.to(device) # DiT_model.to(device) # Set up face verse for amimation if source_type == 'example': input_img_fvid = './demo_data/source_img/img_generate_different_domain/coeffs/demo_imgs' input_img_motion = './demo_data/source_img/img_generate_different_domain/motions/demo_imgs' elif source_type == 'custom': input_img_fvid = os.path.join(save_path_base, 'processed_img/dataset/coeffs/input_image') input_img_motion = os.path.join(save_path_base, 'processed_img/dataset/motions/input_image') else: raise ValueError("Wrong type") bs = 1 sample_steps = 20 cfg_scale = 4.5 pitch_range = 0.25 yaw_range = 0.35 triplane_size = (256 * 4, 256) latent_size = (triplane_size[0] // 8, triplane_size[1] // 8) for chunk in tqdm(list(get_chunks(items, 1)), unit='batch'): if bs != 1: raise ValueError("Batch size > 1 not implemented") image_dir = chunk[0] image_name = os.path.splitext(image_name_true)[0] # # image_name = os.path.splitext(os.path.basename(image_dir))[0] # if source_type == 'custom': # image_name = os.path.splitext(image_name_true)[0] # else: # image_name = os.path.splitext(os.path.basename(image_dir))[0] dino_img, clip_image = image_process(image_dir, clip_image_processor, dino_img_processor, device) clip_feature = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] uncond_clip_feature = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[ -2] dino_feature = dinov2(dino_img).last_hidden_state uncond_dino_feature = dinov2(torch.zeros_like(dino_img)).last_hidden_state samples = generate_samples(DiT_model, cfg_scale, sample_steps, clip_feature, dino_feature, uncond_clip_feature, uncond_dino_feature, device, latent_size, 'dpm-solver') samples = (samples / 0.3994218) samples = rearrange(samples, "b c (f h) w -> b c f h w", f=4) samples = vae_triplane.decode(samples) samples = rearrange(samples, "b c f h w -> b f c h w") samples = samples * std + mean torch.cuda.empty_cache() torch.cuda.ipc_collect() save_frames_path_out = os.path.join(save_path_base, image_name, video_name, 'out') save_frames_path_outshow = os.path.join(save_path_base, image_name, video_name,'out_show') save_frames_path_depth = os.path.join(save_path_base, image_name, video_name, 'depth') os.makedirs(save_frames_path_out, exist_ok=True) os.makedirs(save_frames_path_outshow, exist_ok=True) os.makedirs(save_frames_path_depth, exist_ok=True) img_ref = np.array(Image.open(image_dir)) img_ref_out = img_ref.copy() img_ref = torch.from_numpy(img_ref.astype(np.float32) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0).to(device) motion_app_dir = os.path.join(input_img_motion, image_name + '.npy') motion_app = torch.tensor(np.load(motion_app_dir), dtype=torch.float32).unsqueeze(0).to(device) id_motions = os.path.join(input_img_fvid, image_name + '.npy') all_pose = json.loads(open(label_file_test).read())['labels'] all_pose = dict(all_pose) if os.path.exists(id_motions): coeff = np.load(id_motions).astype(np.float32) coeff = torch.from_numpy(coeff).to(device).float().unsqueeze(0) Faceverse.id_coeff = Faceverse.recon_model.split_coeffs(coeff)[0] motion_dir = os.path.join(motion_base_dir, video_name) exp_dir = os.path.join(exp_base_dir, video_name) for frame_index, motion_name in enumerate( tqdm(natsorted(os.listdir(motion_dir), alg=ns.PATH), desc="Processing Frames")): exp_each_dir_img = os.path.join(exp_img_base_dir, video_name, motion_name.replace('.npy', '.png')) exp_each_dir = os.path.join(exp_dir, motion_name) motion_each_dir = os.path.join(motion_dir, motion_name) # Load pose data pose_key = os.path.join(video_name, motion_name.replace('.npy', '.png')) cam2world_pose = LookAtPoseSampler.sample( 3.14 / 2 + yaw_range * np.sin(2 * 3.14 * frame_index / len(os.listdir(motion_dir))), 3.14 / 2 - 0.05 + pitch_range * np.cos(2 * 3.14 * frame_index / len(os.listdir(motion_dir))), torch.tensor([0, 0, 0], device=device), radius=2.7, device=device) pose_show = torch.cat([cam2world_pose.reshape(-1, 16), FOV_to_intrinsics(fov_degrees=18.837, device=device).reshape(-1, 9)], 1).to(device) pose = torch.tensor(np.array(all_pose[pose_key]).astype(np.float32)).float().unsqueeze(0).to(device) # Load and resize expression image exp_img = np.array(Image.open(exp_each_dir_img).resize((512, 512))) # Load expression coefficients exp_coeff = torch.from_numpy(np.load(exp_each_dir).astype(np.float32)).to(device).float().unsqueeze(0) exp_target = Faceverse.make_driven_rendering(exp_coeff, res=256) # Load motion data motion = torch.tensor(np.load(motion_each_dir)).float().unsqueeze(0).to(device) # img_ref_double = duplicate_batch(img_ref, batch_size=2) # motion_app_double = duplicate_batch(motion_app, batch_size=2) # motion_double = duplicate_batch(motion, batch_size=2) # pose_double = torch.cat([pose_show, pose], dim=0) # exp_target_double = duplicate_batch(exp_target, batch_size=2) # samples_double = duplicate_batch(samples, batch_size=2) # Select refine_net processing method final_out = render_model( img_ref, None, motion_app, motion, c=pose, mesh=exp_target, triplane_recon=samples, ws_avg=ws_avg, motion_scale=1. ) # Process output image final_out_show = trans(final_out['image_sr'][0].unsqueeze(0)) # final_out_notshow = trans(final_out['image_sr'][0].unsqueeze(0)) depth = final_out['image_depth'][0].unsqueeze(0) depth = -depth depth = (depth - depth.min()) / (depth.max() - depth.min()) * 2 - 1 depth = trans(depth) depth = np.repeat(depth[:, :, :], 3, axis=2) # Save output images frame_name = f'{str(frame_index).zfill(4)}.png' Image.fromarray(depth, 'RGB').save(os.path.join(save_frames_path_depth, frame_name)) Image.fromarray(final_out_show, 'RGB').save(os.path.join(save_frames_path_out, frame_name)) # Image.fromarray(final_out_show, 'RGB').save(os.path.join(save_frames_path_outshow, frame_name)) # Generate videos images_to_video(save_frames_path_out, os.path.join(save_path_base, image_name + video_name+ '_out.mp4')) images_to_video(save_frames_path_depth, os.path.join(save_path_base, image_name + video_name+ '_depth.mp4')) logging.info(f"✅ Video generation completed successfully!") return os.path.join(save_path_base, image_name + video_name+ '_out.mp4'), os.path.join(save_path_base, image_name + video_name+'_depth.mp4') except Exception as e: return None, None def get_image_base64(path): with open(path, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode() return f"data:image/png;base64,{encoded_string}" def assert_input_image(input_image): if input_image is None: raise gr.Error("No image selected or uploaded!") @spaces.GPU(duration=30) def process_image(input_image_dir, source_type, is_style, save_dir): """ 🎯 处理 input_image,根据是否是示例图片执行不同逻辑 """ process_img_input_dir = os.path.join(save_dir, 'input_image') process_img_save_dir = os.path.join(save_dir, 'processed_img') base_name = os.path.basename(input_image_dir) # abc123.jpg name_without_ext = os.path.splitext(base_name)[0] # abc123 image_name_true = name_without_ext + ".png" os.makedirs(process_img_save_dir, exist_ok=True) os.makedirs(process_img_input_dir, exist_ok=True) if source_type == "example": image = Image.open(input_image_dir) return image, source_type, image_name_true else: # input_process_model.inference(input_image, process_img_save_dir) shutil.copy(input_image_dir, process_img_input_dir) input_process_model.inference(process_img_input_dir, process_img_save_dir, is_img=True, is_video=False) files = os.listdir(os.path.join(process_img_save_dir, 'dataset/images512x512/input_image')) image_files = [f for f in files if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.webp'))] # 使用 difflib 查找相似文件名 matches = difflib.get_close_matches(image_name_true, image_files, n=1, cutoff=0.1) closest_match = matches[0] imge_dir = os.path.join(process_img_save_dir, 'dataset/images512x512/input_image', closest_match) image = Image.open(imge_dir) image_name_true = closest_match return image, source_type, image_name_true # 这里替换成 处理用户上传图片的逻辑 @spaces.GPU(duration=30) @torch.no_grad() def style_transfer(processed_image, style_prompt, cfg, strength, save_base,image_name_true): """ 🎭 这个函数用于风格转换 ✅ 你可以在这里填入你的风格化代码 """ src_img_pil = Image.open(processed_image) img_name = os.path.basename(processed_image) save_dir = os.path.join(save_base, 'style_img') os.makedirs(save_dir, exist_ok=True) control_image = generate_annotation(src_img_pil, max_faces=1) print(style_prompt) trg_img_pil = pipeline_sd( prompt=style_prompt, image=src_img_pil, strength=strength, control_image=Image.fromarray(control_image), guidance_scale=cfg, negative_prompt='worst quality, normal quality, low quality, low res, blurry', num_inference_steps=30, controlnet_conditioning_scale=1.5 )['images'][0] trg_img_pil.save(os.path.join(save_dir, image_name_true)) return trg_img_pil # 🚨 这里需要替换成你的风格转换逻辑 def reset_flag(): return False css = """ /* ✅ 让所有 Image 居中 + 自适应宽度 */ .gr-image img { display: block; margin-left: auto; margin-right: auto; max-width: 100%; height: auto; } /* ✅ 让所有 Video 居中 + 自适应宽度 */ .gr-video video { display: block; margin-left: auto; margin-right: auto; max-width: 100%; height: auto; } /* ✅ 可选:让按钮和 markdown 居中 */ #generate_block { display: flex; flex-direction: column; align-items: center; justify-content: center; margin-top: 1rem; } /* 可选:让整个容器宽一点 */ #main_container { max-width: 1280px; /* ✅ 例如限制在 1280px 内 */ margin-left: auto; /* ✅ 水平居中 */ margin-right: auto; padding-left: 1rem; padding-right: 1rem; } """ def launch_gradio_app(): styles = { "Ghibli": "Ghibli style avatar, anime style", "Pixar": "a 3D render of a face in Pixar style", "Lego": "a 3D render of a head of a lego man 3D model", "Greek Statue": "a FHD photo of a white Greek statue", "Elf": "a FHD photo of a face of a beautiful elf with silver hair in live action movie", "Zombie": "a FHD photo of a face of a zombie", "Tekken": "a 3D render of a Tekken game character", "Devil": "a FHD photo of a face of a devil in fantasy movie", "Steampunk": "Steampunk style portrait, mechanical, brass and copper tones", "Mario": "a 3D render of a face of Super Mario", "Orc": "a FHD photo of a face of an orc in fantasy movie", "Masque": "a FHD photo of a face of a person in masquerade", "Skeleton": "a FHD photo of a face of a skeleton in fantasy movie", "Peking Opera": "a FHD photo of face of character in Peking opera with heavy make-up", "Yoda": "a FHD photo of a face of Yoda in Star Wars", "Hobbit": "a FHD photo of a face of Hobbit in Lord of the Rings", "Stained Glass": "Stained glass style, portrait, beautiful, translucent", "Graffiti": "Graffiti style portrait, street art, vibrant, urban, detailed, tag", "Pixel-art": "pixel art style portrait, low res, blocky, pixel art style", "Retro": "Retro game art style portrait, vibrant colors", "Ink": "a portrait in ink style, black and white image", } with gr.Blocks(analytics_enabled=False, delete_cache=[3600, 3600], css=css, elem_id="main_container") as demo: logo_url = "./docs/AvatarArtist.png" logo_base64 = get_image_base64(logo_url) # 🚀 让 Logo 居中 & 标题对齐 gr.HTML( f"""

AvatarArtist: Open-Domain 4D Avatarization

""" ) # 🚀 让按钮在一行对齐 gr.HTML( """
""" ) gr.HTML( """
🧑‍🎨 How to use this demo:
  1. Select or upload a source image – this will be the avatar's face.
  2. Select or upload a target video – the avatar will mimic this motion.
  3. Click the Process Image button – this prepares the source image to meet our model's input requirements.
  4. (Optional) Click Apply Style to change the appearance of the processed image – we offer a variety of fun styles to choose from!
  5. Click Generate Avatar to create the final animated result driven by the target video.

🎨 Tip: Try different styles to get various artistic effects for your avatar!

""" ) # 🚀 添加重要提示框 gr.HTML( """

🚨 Important Notes: Please try to provide a front-facing or full-face image without obstructions.

❌ Our demo does not support uploading videos with specific motions because processing requires time.
✅ Feel free to check out our GitHub repository to drive portraits using your desired motions.

""" ) # DISPLAY image_folder = "./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs" video_folder = "./demo_data/target_video" examples_images = sorted( [os.path.join(image_folder, f) for f in os.listdir(image_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg'))] ) examples_videos = sorted( [os.path.join(video_folder, f) for f in os.listdir(video_folder) if f.lower().endswith('.mp4')] ) print(examples_videos) source_type = gr.State("example") is_from_example = gr.State(value=True) is_styled = gr.State(value=False) working_dir = gr.State() image_name_true = gr.State() with gr.Row(): with gr.Column(variant='panel'): with gr.Tabs(elem_id="input_image"): with gr.TabItem('🎨 Upload Image'): input_image = gr.Image( label="Upload Source Image", value=os.path.join(image_folder, '02025.png'), image_mode="RGB", height=512, container=True, sources="upload", type="filepath" ) def mark_as_example(example_image): print("✅ mark_as_example called") return "example", True, False def mark_as_custom(user_image, is_from_example_flag): print("✅ mark_as_custom called") if is_from_example_flag: print("⚠️ Ignored mark_as_custom triggered by example") return "example", False, False return "custom", False, False input_image.change( mark_as_custom, inputs=[input_image, is_from_example], outputs=[source_type, is_from_example, is_styled] # ✅ 只返回 source_type,不要输出 input_image ) # ✅ 让 `Examples` 组件单独占一行,并绑定点击事件 with gr.Row(): example_component = gr.Examples( examples=examples_images, inputs=[input_image], examples_per_page=10, ) # ✅ 监听 `Examples` 的 `click` 事件 example_component.dataset.click( fn=mark_as_example, inputs=[input_image], outputs=[source_type, is_from_example, is_styled] ) with gr.Column(variant='panel' ): with gr.Tabs(elem_id="input_video"): with gr.TabItem('🎬 Target Video'): video_input = gr.Video( label="Select Target Motion", height=512, container=True,interactive=False, format="mp4", value=os.path.join(video_folder, 'Obama.mp4') ) with gr.Row(): gr.Examples( examples=examples_videos, inputs=[video_input], examples_per_page=10, ) with gr.Column(variant='panel' ): with gr.Tabs(elem_id="processed_image"): with gr.TabItem('🖼️ Processed Image'): processed_image = gr.Image( label="Processed Image", image_mode="RGB", type="filepath", elem_id="processed_image", height=512, container=True, interactive=False ) processed_image_button = gr.Button("🔧 Process Image", variant="primary") with gr.Column(variant='panel' ): with gr.Tabs(elem_id="style_transfer"): with gr.TabItem('🎭 Style Transfer'): style_image = gr.Image( label="Style Image", image_mode="RGB", type="filepath", elem_id="style_image", height=512, container=True, interactive=False ) style_choice = gr.Dropdown( choices=list(styles.keys()), label="Choose Style", value="Pixar" ) cfg_slider = gr.Slider( minimum=3.0, maximum=10.0, value=7.5, step=0.1, label="CFG Scale" ) strength_slider = gr.Slider( minimum=0.45, maximum=0.75, value=0.6, step=0.05, label="SDEdit Strength" ) style_button = gr.Button("🎨 Apply Style", interactive=False, elem_id="style_generate", variant='primary') gr.Markdown( """ ⚠️ **Please click 'Process Image' first.** Then use **Apply Style** to stylize the image. `SDEdit Strength`: Higher values make the result closer to the target style; lower values preserve more of the original face. Try to keep facial features recognizable — avoid excessive distortion. """ ) with gr.Row(): with gr.Tabs(elem_id="render_output"): with gr.TabItem('🎥 Animation Results'): # ✅ 让 `Generate Avatar` 按钮单独占一行 with gr.Row(): with gr.Column(scale=1, elem_id="generate_block", min_width=200): submit = gr.Button('🚀 Generate Avatar', elem_id="avatarartist_generate", variant='primary', interactive=False) gr.Markdown("⬇️ Please click **Process Image** first before generating.", elem_id="generate_tip") # ✅ 让两个 `Animation Results` 窗口并排 with gr.Row(): output_video = gr.Video( label="Generated Animation Input Video View", format="mp4", height=512, width=512, autoplay=True ) output_video_1 = gr.Video( label="Generated Animation Rotate View Depth", format="mp4", height=512, width=512, autoplay=True ) def apply_style_and_mark(processed_image, style_choice, cfg, strength, working_dir, image_name_true): try: styled = style_transfer(processed_image, styles[style_choice], cfg, strength, working_dir, image_name_true) return styled, True except Exception as e: return None, True def process_image_and_enable_style(input_image, source_type, is_styled, wd): try: processed_result, updated_source_type, image_name_true = process_image(input_image, source_type, is_styled, wd) return processed_result, updated_source_type, gr.update(interactive=True), gr.update(interactive=True), image_name_true except Exception as e: return None, updated_source_type, gr.update(interactive=False), gr.update(interactive=False), image_name_true processed_image_button.click( fn=prepare_working_dir, inputs=[working_dir, is_styled], outputs=[working_dir], queue=False, ).success( fn=process_image_and_enable_style, inputs=[input_image, source_type, is_styled, working_dir], outputs=[processed_image, source_type, style_button, submit, image_name_true], queue=True ) style_button.click( fn=apply_style_and_mark, inputs=[processed_image, style_choice, cfg_slider, strength_slider, working_dir, image_name_true], outputs=[style_image, is_styled] ) submit.click( fn=avatar_generation, inputs=[processed_image, working_dir, video_input, source_type, is_styled, style_image, image_name_true], outputs=[output_video, output_video_1], # ⏳ 稍后展示视频 queue=True ) demo.queue() demo.launch(server_name="0.0.0.0") if __name__ == '__main__': import torch.multiprocessing as mp import transformers mp.set_start_method('spawn', force=True) # logging.info("Environment Variables: %s" % os.environ) # logging.info("Installing CUDA extensions...") # if _get_output(["nvcc", "--version"]) is None: # logging.info("Installing CUDA toolkit...") # install_cuda_toolkit() # logging.info("installCUDA: %s" % _get_output(["nvcc", "--version"])) # else: # logging.info("Detected CUDA: %s" % _get_output(["nvcc", "--version"])) # print("CUDA_HOME =", os.environ.get("CUDA_HOME")) # from torch.utils.cpp_extension import CUDA_HOME # print("CUDA_HOME from PyTorch:", CUDA_HOME) launch_pretrained() image_folder = "./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs" example_img_names = os.listdir(image_folder) render_model, sample_steps, DiT_model, \ vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, std, mean, ws_avg, device, input_process_model = model_define() controlnet_path = './pretrained_model/control' controlnet = ControlNetModel.from_pretrained( controlnet_path, torch_dtype=torch.float16 ) sd_path = './pretrained_model/sd21' pipeline_sd = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( sd_path, torch_dtype=torch.float16, use_safetensors=True, controlnet=controlnet, variant="fp16" ).to(device) pipeline_sd.scheduler=DPMSolverMultistepScheduler.from_config(pipeline_sd.scheduler.config, use_karras_sigmas=True) demo_cam = False base_coff = np.load( 'pretrained_model/temp.npy').astype( np.float32) base_coff = torch.from_numpy(base_coff).float() Faceverse = Faceverse_manager(device=device, base_coeff=base_coff) launch_gradio_app()