AvatarArtist / inference.py
εˆ˜θ™Ήι›¨
update
8f481d2
import os
import sys
import warnings
import logging
import argparse
import json
import random
from datetime import datetime
import torch
import numpy as np
import cv2
from PIL import Image
from tqdm import tqdm
from natsort import natsorted, ns
from einops import rearrange
from omegaconf import OmegaConf
from huggingface_hub import snapshot_download
from transformers import (
Dinov2Model, CLIPImageProcessor, CLIPVisionModelWithProjection, AutoImageProcessor
)
from Next3d.training_avatar_texture.camera_utils import LookAtPoseSampler, FOV_to_intrinsics
from data_process.lib.FaceVerse.renderer import Faceverse_manager
import recon.dnnlib as dnnlib
import recon.legacy as legacy
from DiT_VAE.diffusion.utils.misc import read_config
from DiT_VAE.vae.triplane_vae import AutoencoderKL as AutoencoderKLTriplane
from DiT_VAE.diffusion import IDDPM, DPMS
from DiT_VAE.diffusion.model.nets import TriDitCLIPDINO_XL_2
from DiT_VAE.diffusion.data.datasets import get_chunks
# Get the directory of the current script
father_path = os.path.dirname(os.path.abspath(__file__))
# Add necessary paths dynamically
sys.path.extend([
os.path.join(father_path, 'recon'),
os.path.join(father_path, 'Next3d')
])
# Suppress warnings (especially for PyTorch)
warnings.filterwarnings("ignore")
# Configure logging settings
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
def get_args():
"""Parse and return command-line arguments."""
parser = argparse.ArgumentParser(description="4D Triplane Generation Arguments")
# Configuration and model checkpoints
parser.add_argument("--config", type=str, default="./configs/infer_config.py",
help="Path to the configuration file.")
# Input data paths
parser.add_argument("--target_path", type=str, required=True, default='./demo_data/target_video/data_obama',
help="Base path of the dataset.")
parser.add_argument("--img_file", type=str, required=True, default='./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs',
help="Directory containing input images.")
parser.add_argument("--input_img_motion", type=str,
default="./demo_data/source_img/img_generate_different_domain/motions/demo_imgs",
help="Directory containing motion features.")
parser.add_argument("--video_name", type=str, required=True, default='Obama',
help="Name of the video.")
parser.add_argument("--input_img_fvid", type=str,
default="./demo_data/source_img/img_generate_different_domain/coeffs/demo_imgs",
help="Path to input image coefficients.")
# Output settings
parser.add_argument("--output_basedir", type=str, default="./output",
help="Base directory for saving output results.")
# Generation parameters
parser.add_argument("--bs", type=int, default=1,
help="Batch size for processing.")
parser.add_argument("--cfg_scale", type=float, default=4.5,
help="CFG scale parameter.")
parser.add_argument("--sampling_algo", type=str, default="dpm-solver",
choices=["iddpm", "dpm-solver"],
help="Sampling algorithm to be used.")
parser.add_argument("--seed", type=int, default=0,
help="Random seed for reproducibility.")
parser.add_argument("--select_img", type=str, default=None,
help="Optional: Select a specific image.")
parser.add_argument('--step', default=-1, type=int)
parser.add_argument('--use_demo_cam', action='store_true', help="Enable predefined camera parameters")
return parser.parse_args()
def set_env(seed=0):
"""Set random seed for reproducibility across multiple frameworks."""
torch.manual_seed(seed) # Set PyTorch seed
torch.cuda.manual_seed_all(seed) # If using multi-GPU
np.random.seed(seed) # Set NumPy seed
random.seed(seed) # Set Python built-in random module seed
torch.set_grad_enabled(False) # Disable gradients for inference
def to_rgb_image(image: Image.Image):
"""Convert an image to RGB format if necessary."""
if image.mode == 'RGB':
return image
elif image.mode == 'RGBA':
img = Image.new("RGB", image.size, (127, 127, 127))
img.paste(image, mask=image.getchannel('A'))
return img
else:
raise ValueError(f"Unsupported image type: {image.mode}")
def image_process(image_path):
"""Preprocess an image for CLIP and DINO models."""
image = to_rgb_image(Image.open(image_path))
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values.to(device)
dino_image = dino_img_processor(images=image, return_tensors="pt").pixel_values.to(device)
return dino_image, clip_image
def video_gen(frames_dir, output_path, fps=30):
"""Generate a video from image frames."""
frame_files = natsorted(os.listdir(frames_dir), alg=ns.PATH)
frames = [cv2.imread(os.path.join(frames_dir, f)) for f in frame_files]
H, W = frames[0].shape[:2]
video_writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'MP4V'), fps, (W, H))
for frame in frames:
video_writer.write(frame)
video_writer.release()
def trans(tensor_img):
img = (tensor_img.permute(0, 2, 3, 1) * 0.5 + 0.5).clamp(0, 1) * 255.
img = img.to(torch.uint8)
img = img[0].detach().cpu().numpy()
return img
def get_vert(vert_dir):
uvcoords_image = np.load(os.path.join(vert_dir))[..., :3]
uvcoords_image[..., -1][uvcoords_image[..., -1] < 0.5] = 0
uvcoords_image[..., -1][uvcoords_image[..., -1] >= 0.5] = 1
return torch.tensor(uvcoords_image.copy()).float().unsqueeze(0)
def generate_samples(DiT_model, cfg_scale, sample_steps, clip_feature, dino_feature, uncond_clip_feature,
uncond_dino_feature, device, latent_size, sampling_algo):
"""
Generate latent samples using the specified diffusion model.
Args:
DiT_model (torch.nn.Module): The diffusion model.
cfg_scale (float): The classifier-free guidance scale.
sample_steps (int): Number of sampling steps.
clip_feature (torch.Tensor): CLIP feature tensor.
dino_feature (torch.Tensor): DINO feature tensor.
uncond_clip_feature (torch.Tensor): Unconditional CLIP feature tensor.
uncond_dino_feature (torch.Tensor): Unconditional DINO feature tensor.
device (str): Device for computation.
latent_size (tuple): The latent space size.
sampling_algo (str): The sampling algorithm ('iddpm' or 'dpm-solver').
Returns:
torch.Tensor: The generated samples.
"""
n = 1 # Batch size
z = torch.randn(n, 8, latent_size[0], latent_size[1], device=device)
if sampling_algo == 'iddpm':
z = z.repeat(2, 1, 1, 1) # Duplicate for classifier-free guidance
model_kwargs = dict(y=torch.cat([clip_feature, uncond_clip_feature]),
img_feature=torch.cat([dino_feature, dino_feature]),
cfg_scale=cfg_scale)
diffusion = IDDPM(str(sample_steps))
samples = diffusion.p_sample_loop(DiT_model.forward_with_cfg, z.shape, z, clip_denoised=False,
model_kwargs=model_kwargs, progress=True, device=device)
samples, _ = samples.chunk(2, dim=0) # Remove unconditional samples
elif sampling_algo == 'dpm-solver':
dpm_solver = DPMS(DiT_model.forward_with_dpmsolver,
condition=[clip_feature, dino_feature],
uncondition=[uncond_clip_feature, dino_feature],
cfg_scale=cfg_scale)
samples = dpm_solver.sample(z, steps=sample_steps, order=2, skip_type="time_uniform", method="multistep")
else:
raise ValueError(f"Invalid sampling_algo '{sampling_algo}'. Choose either 'iddpm' or 'dpm-solver'.")
return samples
def images_to_video(image_folder, output_video, fps=30):
# Get all image files and ensure correct order
images = [img for img in os.listdir(image_folder) if img.endswith((".png", ".jpg", ".jpeg"))]
images = natsorted(images) # Sort filenames naturally to preserve frame order
if not images:
print("❌ No images found in the directory!")
return
# Get the path to the FFmpeg executable
ffmpeg_exe = ffmpeg.get_ffmpeg_exe()
print(f"Using FFmpeg from: {ffmpeg_exe}")
# Define input image pattern (expects images named like "%04d.png")
image_pattern = os.path.join(image_folder, "%04d.png")
# FFmpeg command to encode video
command = [
ffmpeg_exe, '-framerate', str(fps), '-i', image_pattern,
'-c:v', 'libx264', '-preset', 'slow', '-crf', '18', # High-quality H.264 encoding
'-pix_fmt', 'yuv420p', '-b:v', '5000k', # Ensure compatibility & increase bitrate
output_video
]
# Run FFmpeg command
subprocess.run(command, check=True)
print(f"βœ… High-quality MP4 video has been generated: {output_video}")
@torch.inference_mode()
def avatar_generation(items, bs, sample_steps, cfg_scale, save_path_base, DiT_model, render_model, std, mean, ws_avg,
Faceverse, pitch_range=0.25, yaw_range=0.35, demo_cam=False):
"""
Generate avatars from input images.
Args:
items (list): List of image paths.
bs (int): Batch size.
sample_steps (int): Number of sampling steps.
cfg_scale (float): Classifier-free guidance scale.
save_path_base (str): Base directory for saving results.
DiT_model (torch.nn.Module): The diffusion model.
render_model (torch.nn.Module): The rendering model.
std (torch.Tensor): Standard deviation normalization tensor.
mean (torch.Tensor): Mean normalization tensor.
ws_avg (torch.Tensor): Latent average tensor.
"""
for chunk in tqdm(list(get_chunks(items, bs)), unit='batch'):
if bs != 1:
raise ValueError("Batch size > 1 not implemented")
image_dir = chunk[0]
image_name = os.path.splitext(os.path.basename(image_dir))[0]
dino_img, clip_image = image_process(image_dir)
clip_feature = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
uncond_clip_feature = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[
-2]
dino_feature = dinov2(dino_img).last_hidden_state
uncond_dino_feature = dinov2(torch.zeros_like(dino_img)).last_hidden_state
samples = generate_samples(DiT_model, cfg_scale, sample_steps, clip_feature, dino_feature,
uncond_clip_feature, uncond_dino_feature, device, latent_size,
args.sampling_algo)
samples = (samples / default_config.scale_factor)
samples = rearrange(samples, "b c (f h) w -> b c f h w", f=4)
samples = vae_triplane.decode(samples)
samples = rearrange(samples, "b c f h w -> b f c h w")
samples = samples * std + mean
torch.cuda.empty_cache()
save_frames_path_combine = os.path.join(save_path_base, image_name, 'combine')
save_frames_path_out = os.path.join(save_path_base, image_name, 'out')
os.makedirs(save_frames_path_combine, exist_ok=True)
os.makedirs(save_frames_path_out, exist_ok=True)
img_ref = np.array(Image.open(image_dir))
img_ref_out = img_ref.copy()
img_ref = torch.from_numpy(img_ref.astype(np.float32) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0).to(device)
motion_app_dir = os.path.join(args.input_img_motion, image_name + '.npy')
motion_app = torch.tensor(np.load(motion_app_dir), dtype=torch.float32).unsqueeze(0).to(device)
id_motions = os.path.join(args.input_img_fvid, image_name + '.npy')
all_pose = json.loads(open(label_file_test).read())['labels']
all_pose = dict(all_pose)
if os.path.exists(id_motions):
coeff = np.load(id_motions).astype(np.float32)
coeff = torch.from_numpy(coeff).to(device).float().unsqueeze(0)
Faceverse.id_coeff = Faceverse.recon_model.split_coeffs(coeff)[0]
motion_dir = os.path.join(motion_base_dir, args.video_name)
exp_dir = os.path.join(exp_base_dir, args.video_name)
for frame_index, motion_name in enumerate(
tqdm(natsorted(os.listdir(motion_dir), alg=ns.PATH), desc="Processing Frames")):
exp_each_dir_img = os.path.join(exp_img_base_dir, args.video_name, motion_name.replace('.npy', '.png'))
exp_each_dir = os.path.join(exp_dir, motion_name)
motion_each_dir = os.path.join(motion_dir, motion_name)
# Load pose data
pose_key = os.path.join(args.video_name, motion_name.replace('.npy', '.png'))
if demo_cam:
cam2world_pose = LookAtPoseSampler.sample(
3.14 / 2 + yaw_range * np.sin(2 * 3.14 * frame_index / len(os.listdir(motion_dir))),
3.14 / 2 - 0.05 + pitch_range * np.cos(2 * 3.14 * frame_index / len(os.listdir(motion_dir))),
torch.tensor([0, 0, 0], device=device), radius=2.7, device=device)
pose = torch.cat([cam2world_pose.reshape(-1, 16),
FOV_to_intrinsics(fov_degrees=18.837, device=device).reshape(-1, 9)], 1).to(device)
else:
pose = torch.tensor(np.array(all_pose[pose_key]).astype(np.float32)).float().unsqueeze(0).to(device)
# Load and resize expression image
exp_img = np.array(Image.open(exp_each_dir_img).resize((512, 512)))
# Load expression coefficients
exp_coeff = torch.from_numpy(np.load(exp_each_dir).astype(np.float32)).to(device).float().unsqueeze(0)
exp_target = Faceverse.make_driven_rendering(exp_coeff, res=256)
# Load motion data
motion = torch.tensor(np.load(motion_each_dir)).float().unsqueeze(0).to(device)
# Select refine_net processing method
final_out = render_model(
img_ref, None, motion_app, motion, c=pose, mesh=exp_target, triplane_recon=samples,
ws_avg=ws_avg, motion_scale=1.
)
# Process output image
final_out = trans(final_out['image_sr'])
output_img_combine = np.hstack((img_ref_out, exp_img, final_out))
# Save output images
frame_name = f'{str(frame_index).zfill(4)}.png'
Image.fromarray(output_img_combine, 'RGB').save(os.path.join(save_frames_path_combine, frame_name))
Image.fromarray(final_out, 'RGB').save(os.path.join(save_frames_path_out, frame_name))
# Generate videos
images_to_video(save_frames_path_combine, os.path.join(save_path_base, image_name + '_combine.mp4'))
images_to_video(save_frames_path_out, os.path.join(save_path_base, image_name + '_out.mp4'))
logging.info(f"βœ… Video generation completed successfully!")
logging.info(f"πŸ“‚ Combined video saved at: {os.path.join(save_path_base, image_name + '_combine.mp4')}")
logging.info(f"πŸ“‚ Output video saved at: {os.path.join(save_path_base, image_name + '_out.mp4')}")
def load_motion_aware_render_model(ckpt_path):
"""Load the motion-aware render model from a checkpoint."""
logging.info("Loading motion-aware render model...")
with dnnlib.util.open_url(ckpt_path, 'rb') as f:
network = legacy.load_network_pkl(f) # type: ignore
logging.info("Motion-aware render model loaded.")
return network['G_ema'].to(device)
def load_diffusion_model(ckpt_path, latent_size):
"""Load the diffusion model (DiT)."""
logging.info("Loading diffusion model (DiT)...")
DiT_model = TriDitCLIPDINO_XL_2(input_size=latent_size).to(device)
ckpt = torch.load(ckpt_path, map_location="cpu")
# Remove keys that can cause mismatches
for key in ['pos_embed', 'base_model.pos_embed', 'model.pos_embed']:
ckpt['state_dict'].pop(key, None)
ckpt.get('state_dict_ema', {}).pop(key, None)
state_dict = ckpt.get('state_dict_ema', ckpt)
DiT_model.load_state_dict(state_dict, strict=False)
DiT_model.eval()
logging.info("Diffusion model (DiT) loaded.")
return DiT_model
def load_vae_clip_dino(config, device):
"""Load VAE, CLIP, and DINO models."""
logging.info("Loading VAE, CLIP, and DINO models...")
# Load CLIP image encoder
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path)
image_encoder.requires_grad_(False)
image_encoder.to(device)
# Load VAE
config_vae = OmegaConf.load(config.vae_triplane_config_path)
vae_triplane = AutoencoderKLTriplane(ddconfig=config_vae['ddconfig'], lossconfig=None, embed_dim=8)
vae_triplane.to(device)
vae_ckpt_path = os.path.join(config.vae_pretrained, 'pytorch_model.bin')
if not os.path.isfile(vae_ckpt_path):
raise RuntimeError(f"VAE checkpoint not found at {vae_ckpt_path}")
vae_triplane.load_state_dict(torch.load(vae_ckpt_path, map_location="cpu"))
vae_triplane.requires_grad_(False)
# Load DINO model
dinov2 = Dinov2Model.from_pretrained(config.dino_pretrained)
dinov2.requires_grad_(False)
dinov2.to(device)
# Load image processors
dino_img_processor = AutoImageProcessor.from_pretrained(config.dino_pretrained)
clip_image_processor = CLIPImageProcessor()
logging.info("VAE, CLIP, and DINO models loaded.")
return vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor
def prepare_image_list(img_dir, selected_img):
"""Prepare the list of image paths for processing."""
if selected_img and selected_img in os.listdir(img_dir):
return [os.path.join(img_dir, selected_img)]
return sorted([os.path.join(img_dir, img) for img in os.listdir(img_dir)])
if __name__ == '__main__':
model_path = "./pretrained_model"
if not os.path.exists(model_path):
logging.info("πŸ“₯ Model not found. Downloading from Hugging Face...")
snapshot_download(repo_id="KumaPower/AvatarArtist", local_dir=model_path)
logging.info("βœ… Model downloaded successfully!")
else:
logging.info("πŸŽ‰ Pretrained model already exists. Skipping download.")
args = get_args()
exp_base_dir = os.path.join(args.target_path, 'coeffs')
exp_img_base_dir = os.path.join(args.target_path, 'images512x512')
motion_base_dir = os.path.join(args.target_path, 'motions')
label_file_test = os.path.join(args.target_path, 'images512x512/dataset_realcam.json')
set_env(args.seed)
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.float32
logging.info(f"Running inference with {weight_dtype}")
# Load configuration
default_config = read_config(args.config)
# Ensure valid sampling algorithm
assert args.sampling_algo in ['iddpm', 'dpm-solver', 'sa-solver']
# Prepare image list
items = prepare_image_list(args.img_file, args.select_img)
logging.info(f"Input images: {items}")
# Load motion-aware render model
motion_aware_render_model = load_motion_aware_render_model(default_config.motion_aware_render_model_ckpt)
# Load diffusion model (DiT)
triplane_size = (256 * 4, 256)
latent_size = (triplane_size[0] // 8, triplane_size[1] // 8)
sample_steps = args.step if args.step != -1 else {'iddpm': 100, 'dpm-solver': 20, 'sa-solver': 25}[
args.sampling_algo]
DiT_model = load_diffusion_model(default_config.DiT_model_ckpt, latent_size)
# Load VAE, CLIP, and DINO
vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor = load_vae_clip_dino(default_config,
device)
# Load normalization parameters
triplane_std = torch.load(default_config.std_dir).to(device).reshape(1, -1, 1, 1, 1)
triplane_mean = torch.load(default_config.mean_dir).to(device).reshape(1, -1, 1, 1, 1)
# Load average latent vector
ws_avg = torch.load(default_config.ws_avg_pkl).to(device)[0]
# Set up save directory
save_root = os.path.join(args.output_basedir, f'{datetime.now().date()}', args.video_name)
os.makedirs(save_root, exist_ok=True)
# Set up face verse for amimation
base_coff = np.load(
'pretrained_model/temp.npy').astype(
np.float32)
base_coff = torch.from_numpy(base_coff).float()
Faceverse = Faceverse_manager(device=device, base_coeff=base_coff)
# Run avatar generation
avatar_generation(items, args.bs, sample_steps, args.cfg_scale, save_root, DiT_model, motion_aware_render_model,
triplane_std, triplane_mean, ws_avg, Faceverse, demo_cam=args.use_demo_cam)