AvatarArtist / app.py
KumaPower's picture
Upload app.py
ef43984 verified
import os
import subprocess
import sys
import warnings
import logging
if os.environ.get("SPACES_ZERO_GPU") is not None:
import spaces
else:
class spaces:
@staticmethod
def GPU(*decorator_args, **decorator_kwargs):
def decorator(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
return decorator
import difflib
# Configure logging settings
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
def _get_output(cmd):
try:
return subprocess.check_output(cmd).decode("utf-8")
except Exception as ex:
logging.exception(ex)
return None
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
print(f"[INFO] Downloading CUDA Toolkit from {CUDA_TOOLKIT_URL} ...")
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
print("[INFO] Installing CUDA Toolkit silently ...")
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
print("[INFO] Setting CUDA environment variables ...")
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ.get("PATH", ""))
os.environ["LD_LIBRARY_PATH"] = "%s/lib64:%s" % (
os.environ["CUDA_HOME"],
os.environ.get("LD_LIBRARY_PATH", "")
)
# Optional: set architecture list for compilation (Ampere and Ada)
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9"
if os.path.exists(CUDA_TOOLKIT_FILE):
os.remove(CUDA_TOOLKIT_FILE)
print(f"[INFO] Removed installer file: {CUDA_TOOLKIT_FILE}")
else:
print(f"[WARN] Installer file not found: {CUDA_TOOLKIT_FILE}")
print(os.listdir("/usr/local/cuda"))
print("[INFO] CUDA 12.1 installation complete. CUDA_HOME set to /usr/local/cuda")
logging.info("Environment Variables: %s" % os.environ)
logging.info("Installing CUDA extensions...")
if _get_output(["nvcc", "--version"]) is None:
logging.info("Installing CUDA toolkit...")
install_cuda_toolkit()
logging.info("installCUDA: %s" % _get_output(["nvcc", "--version"]))
else:
logging.info("Detected CUDA: %s" % _get_output(["nvcc", "--version"]))
import torch
import argparse
import json
import random
from datetime import datetime
import torch
import numpy as np
import cv2
from PIL import Image
from tqdm import tqdm
from natsort import natsorted, ns
from einops import rearrange
from omegaconf import OmegaConf
from huggingface_hub import snapshot_download
import gradio as gr
import base64
import imageio_ffmpeg as ffmpeg
import subprocess
from different_domain_imge_gen.landmark_generation import generate_annotation
from transformers import (
Dinov2Model, CLIPImageProcessor, CLIPVisionModelWithProjection, AutoImageProcessor
)
from Next3d.training_avatar_texture.camera_utils import LookAtPoseSampler, FOV_to_intrinsics
import recon.dnnlib as dnnlib
import recon.legacy as legacy
from DiT_VAE.diffusion.utils.misc import read_config
from DiT_VAE.vae.triplane_vae import AutoencoderKL as AutoencoderKLTriplane
from DiT_VAE.diffusion import IDDPM, DPMS
from DiT_VAE.diffusion.model.nets import TriDitCLIPDINO_XL_2
from DiT_VAE.diffusion.data.datasets import get_chunks
# Get the directory of the current script
father_path = os.path.dirname(os.path.abspath(__file__))
# Add necessary paths dynamically
sys.path.extend([
os.path.join(father_path, 'recon'),
os.path.join(father_path, 'Next3d'),
os.path.join(father_path, 'data_process'),
os.path.join(father_path, 'data_process/lib')
])
from lib.FaceVerse.renderer import Faceverse_manager
from data_process.input_img_align_extract_ldm_demo import Process
from lib.config.config_demo import cfg
import shutil
# Suppress warnings (especially for PyTorch)
warnings.filterwarnings("ignore")
os.environ["MEDIAPIPE_DISABLE_GPU"] = "1" # Disable GPU for MediaPipe
# 🔧 Set CUDA_HOME before anything else
# os.system("pip uninstall diffusers")
# os.system("pip install diffusers==0.20.1")
from diffusers import (
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
DPMSolverMultistepScheduler,
)
def get_args():
"""Parse and return command-line arguments."""
parser = argparse.ArgumentParser(description="4D Triplane Generation Arguments")
# Configuration and model checkpoints
parser.add_argument("--config", type=str, default="./configs/infer_config.py",
help="Path to the configuration file.")
# Generation parameters
parser.add_argument("--bs", type=int, default=1,
help="Batch size for processing.")
parser.add_argument("--cfg_scale", type=float, default=4.5,
help="CFG scale parameter.")
parser.add_argument("--sampling_algo", type=str, default="dpm-solver",
choices=["iddpm", "dpm-solver"],
help="Sampling algorithm to be used.")
parser.add_argument("--seed", type=int, default=42,
help="Random seed for reproducibility.")
# parser.add_argument("--select_img", type=str, default=None,
# help="Optional: Select a specific image.")
parser.add_argument('--step', default=-1, type=int)
# parser.add_argument('--use_demo_cam', action='store_true', help="Enable predefined camera parameters")
return parser.parse_args()
def set_env(seed=0):
"""Set random seed for reproducibility across multiple frameworks."""
torch.manual_seed(seed) # Set PyTorch seed
torch.cuda.manual_seed_all(seed) # If using multi-GPU
np.random.seed(seed) # Set NumPy seed
random.seed(seed) # Set Python built-in random module seed
torch.set_grad_enabled(False) # Disable gradients for inference
def to_rgb_image(image: Image.Image):
"""Convert an image to RGB format if necessary."""
if image.mode == 'RGB':
return image
elif image.mode == 'RGBA':
img = Image.new("RGB", image.size, (127, 127, 127))
img.paste(image, mask=image.getchannel('A'))
return img
else:
raise ValueError(f"Unsupported image type: {image.mode}")
def image_process(image_path, clip_image_processor, dino_img_processor, device):
"""Preprocess an image for CLIP and DINO models."""
image = to_rgb_image(Image.open(image_path))
clip_image = clip_image_processor(images=image, return_tensors="pt").pixel_values.to(device)
dino_image = dino_img_processor(images=image, return_tensors="pt").pixel_values.to(device)
return dino_image, clip_image
# def video_gen(frames_dir, output_path, fps=30):
# """Generate a video from image frames."""
# frame_files = natsorted(os.listdir(frames_dir), alg=ns.PATH)
# frames = [cv2.imread(os.path.join(frames_dir, f)) for f in frame_files]
# H, W = frames[0].shape[:2]
# video_writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'MP4V'), fps, (W, H))
# for frame in frames:
# video_writer.write(frame)
# video_writer.release()
def trans(tensor_img):
img = (tensor_img.permute(0, 2, 3, 1) * 0.5 + 0.5).clamp(0, 1) * 255.
img = img.to(torch.uint8)
img = img[0].detach().cpu().numpy()
return img
def get_vert(vert_dir):
uvcoords_image = np.load(os.path.join(vert_dir))[..., :3]
uvcoords_image[..., -1][uvcoords_image[..., -1] < 0.5] = 0
uvcoords_image[..., -1][uvcoords_image[..., -1] >= 0.5] = 1
return torch.tensor(uvcoords_image.copy()).float().unsqueeze(0)
def generate_samples(DiT_model, cfg_scale, sample_steps, clip_feature, dino_feature, uncond_clip_feature,
uncond_dino_feature, device, latent_size, sampling_algo):
"""
Generate latent samples using the specified diffusion model.
Args:
DiT_model (torch.nn.Module): The diffusion model.
cfg_scale (float): The classifier-free guidance scale.
sample_steps (int): Number of sampling steps.
clip_feature (torch.Tensor): CLIP feature tensor.
dino_feature (torch.Tensor): DINO feature tensor.
uncond_clip_feature (torch.Tensor): Unconditional CLIP feature tensor.
uncond_dino_feature (torch.Tensor): Unconditional DINO feature tensor.
device (str): Device for computation.
latent_size (tuple): The latent space size.
sampling_algo (str): The sampling algorithm ('iddpm' or 'dpm-solver').
Returns:
torch.Tensor: The generated samples.
"""
n = 1 # Batch size
z = torch.randn(n, 8, latent_size[0], latent_size[1], device=device)
if sampling_algo == 'iddpm':
z = z.repeat(2, 1, 1, 1) # Duplicate for classifier-free guidance
model_kwargs = dict(y=torch.cat([clip_feature, uncond_clip_feature]),
img_feature=torch.cat([dino_feature, dino_feature]),
cfg_scale=cfg_scale)
diffusion = IDDPM(str(sample_steps))
samples = diffusion.p_sample_loop(DiT_model.forward_with_cfg, z.shape, z, clip_denoised=False,
model_kwargs=model_kwargs, progress=True, device=device)
samples, _ = samples.chunk(2, dim=0) # Remove unconditional samples
elif sampling_algo == 'dpm-solver':
dpm_solver = DPMS(DiT_model.forward_with_dpmsolver,
condition=[clip_feature, dino_feature],
uncondition=[uncond_clip_feature, dino_feature],
cfg_scale=cfg_scale)
samples = dpm_solver.sample(z, steps=sample_steps, order=2, skip_type="time_uniform", method="multistep")
else:
raise ValueError(f"Invalid sampling_algo '{sampling_algo}'. Choose either 'iddpm' or 'dpm-solver'.")
return samples
def load_motion_aware_render_model(ckpt_path, device):
"""Load the motion-aware render model from a checkpoint."""
logging.info("Loading motion-aware render model...")
with dnnlib.util.open_url(ckpt_path, 'rb') as f:
network = legacy.load_network_pkl(f) # type: ignore
logging.info("Motion-aware render model loaded.")
return network['G_ema'].to(device)
def load_diffusion_model(ckpt_path, latent_size, device):
"""Load the diffusion model (DiT)."""
logging.info("Loading diffusion model (DiT)...")
DiT_model = TriDitCLIPDINO_XL_2(input_size=latent_size).to(device)
ckpt = torch.load(ckpt_path, map_location="cpu")
# Remove keys that can cause mismatches
for key in ['pos_embed', 'base_model.pos_embed', 'model.pos_embed']:
ckpt['state_dict'].pop(key, None)
ckpt.get('state_dict_ema', {}).pop(key, None)
state_dict = ckpt.get('state_dict_ema', ckpt)
DiT_model.load_state_dict(state_dict, strict=False)
DiT_model.eval()
logging.info("Diffusion model (DiT) loaded.")
return DiT_model
def load_vae_clip_dino(config, device):
"""Load VAE, CLIP, and DINO models."""
logging.info("Loading VAE, CLIP, and DINO models...")
# Load CLIP image encoder
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path)
image_encoder.requires_grad_(False)
image_encoder.to(device)
# Load VAE
config_vae = OmegaConf.load(config.vae_triplane_config_path)
vae_triplane = AutoencoderKLTriplane(ddconfig=config_vae['ddconfig'], lossconfig=None, embed_dim=8)
vae_triplane.to(device)
vae_ckpt_path = os.path.join(config.vae_pretrained, 'pytorch_model.bin')
if not os.path.isfile(vae_ckpt_path):
raise RuntimeError(f"VAE checkpoint not found at {vae_ckpt_path}")
vae_triplane.load_state_dict(torch.load(vae_ckpt_path, map_location="cpu"))
vae_triplane.requires_grad_(False)
# Load DINO model
dinov2 = Dinov2Model.from_pretrained(config.dino_pretrained)
dinov2.requires_grad_(False)
dinov2.to(device)
# Load image processors
dino_img_processor = AutoImageProcessor.from_pretrained(config.dino_pretrained)
clip_image_processor = CLIPImageProcessor()
logging.info("VAE, CLIP, and DINO models loaded.")
return vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor
def prepare_working_dir(dir, style):
print('stylestylestylestylestylestylestyle',style)
if style:
return dir
else:
import tempfile
working_dir = tempfile.TemporaryDirectory()
return working_dir.name
def launch_pretrained():
from huggingface_hub import snapshot_download
os.system("pip uninstall torch")
os.system("pip uninstall torchvision")
os.system("pip install https://download.pytorch.org/whl/cu121/torch-2.4.1%2Bcu121-cp310-cp310-linux_x86_64.whl")
os.system("pip install https://download.pytorch.org/whl/cu121/torchvision-0.19.1%2Bcu121-cp310-cp310-linux_x86_64.whl")
snapshot_download(
repo_id="KumaPower/AvatarArtist",
repo_type="model",
local_dir="./pretrained_model",
local_dir_use_symlinks=False
)
snapshot_download(
repo_id="stabilityai/stable-diffusion-2-1-base",
repo_type="model",
local_dir="./pretrained_model/sd21",
local_dir_use_symlinks=False
)
logging.info("delete models.")
os.remove('./pretrained_model/sd21/v2-1_512-ema-pruned.ckpt')
os.remove('./pretrained_model/sd21/v2-1_512-nonema-pruned.ckpt')
# 下载 CrucibleAI/ControlNetMediaPipeFace 的所有文件
snapshot_download(
repo_id="CrucibleAI/ControlNetMediaPipeFace",
repo_type="model",
local_dir="./pretrained_model/control",
local_dir_use_symlinks=False
)
def prepare_image_list(img_dir, selected_img):
"""Prepare the list of image paths for processing."""
if selected_img and selected_img in os.listdir(img_dir):
return [os.path.join(img_dir, selected_img)]
return sorted([os.path.join(img_dir, img) for img in os.listdir(img_dir)])
def images_to_video(image_folder, output_video, fps=30):
# Get all image files and ensure correct order
images = [img for img in os.listdir(image_folder) if img.endswith((".png", ".jpg", ".jpeg"))]
images = natsorted(images) # Sort filenames naturally to preserve frame order
if not images:
print("❌ No images found in the directory!")
return
# Get the path to the FFmpeg executable
ffmpeg_exe = ffmpeg.get_ffmpeg_exe()
print(f"Using FFmpeg from: {ffmpeg_exe}")
# Define input image pattern (expects images named like "%04d.png")
image_pattern = os.path.join(image_folder, "%04d.png")
# FFmpeg command to encode video (with -y to overwrite)
command = [
ffmpeg_exe,
'-y', # ✅ Overwrite output file without asking
'-framerate', str(fps),
'-i', image_pattern,
'-c:v', 'libx264',
'-preset', 'slow',
'-crf', '18',
'-pix_fmt', 'yuv420p',
'-b:v', '5000k',
output_video
]
# Run FFmpeg command
subprocess.run(command, check=True)
print(f"✅ High-quality MP4 video has been generated: {output_video}")
def model_define():
args = get_args()
set_env(args.seed)
input_process_model = Process(cfg)
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.float32
logging.info(f"Running inference with {weight_dtype}")
# Load configuration
default_config = read_config(args.config)
# Ensure valid sampling algorithm
assert args.sampling_algo in ['iddpm', 'dpm-solver', 'sa-solver']
# Load motion-aware render model
motion_aware_render_model = load_motion_aware_render_model(default_config.motion_aware_render_model_ckpt, device)
# Load diffusion model (DiT)
triplane_size = (256 * 4, 256)
latent_size = (triplane_size[0] // 8, triplane_size[1] // 8)
sample_steps = args.step if args.step != -1 else {'iddpm': 100, 'dpm-solver': 20, 'sa-solver': 25}[
args.sampling_algo]
DiT_model = load_diffusion_model(default_config.DiT_model_ckpt, latent_size, device)
# Load VAE, CLIP, and DINO
vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor = load_vae_clip_dino(default_config,
device)
# Load normalization parameters
triplane_std = torch.load(default_config.std_dir).to(device).reshape(1, -1, 1, 1, 1)
triplane_mean = torch.load(default_config.mean_dir).to(device).reshape(1, -1, 1, 1, 1)
# Load average latent vector
ws_avg = torch.load(default_config.ws_avg_pkl).to(device)[0]
return motion_aware_render_model, sample_steps, DiT_model, \
vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, triplane_std, triplane_mean, ws_avg, device, input_process_model
def duplicate_batch(tensor, batch_size=2):
if tensor is None:
return None # 如果是 None,则直接返回
return tensor.repeat(batch_size, *([1] * (tensor.dim() - 1))) # 复制 batch 维度
@torch.no_grad()
@spaces.GPU(duration=200)
def avatar_generation(items, save_path_base, video_path_input, source_type, is_styled, styled_img, image_name_true):
"""
Generate avatars from input images.
Args:
items (list): List of image paths.
bs (int): Batch size.
sample_steps (int): Number of sampling steps.
cfg_scale (float): Classifier-free guidance scale.
save_path_base (str): Base directory for saving results.
DiT_model (torch.nn.Module): The diffusion model.
render_model (torch.nn.Module): The rendering model.
std (torch.Tensor): Standard deviation normalization tensor.
mean (torch.Tensor): Mean normalization tensor.
ws_avg (torch.Tensor): Latent average tensor.
"""
try:
if is_styled:
items = [styled_img]
else:
items = [items]
video_folder = "./demo_data/target_video"
video_name = os.path.basename(video_path_input).split(".")[0]
target_path = os.path.join(video_folder, 'data_' + video_name)
exp_base_dir = os.path.join(target_path, 'coeffs')
exp_img_base_dir = os.path.join(target_path, 'images512x512')
motion_base_dir = os.path.join(target_path, 'motions')
label_file_test = os.path.join(target_path, 'images512x512/dataset_realcam.json')
# render_model.to(device)
# image_encoder.to(device)
# vae_triplane.to(device)
# dinov2.to(device)
# ws_avg.to(device)
# DiT_model.to(device)
# Set up face verse for amimation
if source_type == 'example':
input_img_fvid = './demo_data/source_img/img_generate_different_domain/coeffs/demo_imgs'
input_img_motion = './demo_data/source_img/img_generate_different_domain/motions/demo_imgs'
elif source_type == 'custom':
input_img_fvid = os.path.join(save_path_base, 'processed_img/dataset/coeffs/input_image')
input_img_motion = os.path.join(save_path_base, 'processed_img/dataset/motions/input_image')
else:
raise ValueError("Wrong type")
bs = 1
sample_steps = 20
cfg_scale = 4.5
pitch_range = 0.25
yaw_range = 0.35
triplane_size = (256 * 4, 256)
latent_size = (triplane_size[0] // 8, triplane_size[1] // 8)
for chunk in tqdm(list(get_chunks(items, 1)), unit='batch'):
if bs != 1:
raise ValueError("Batch size > 1 not implemented")
image_dir = chunk[0]
image_name = os.path.splitext(image_name_true)[0]
# # image_name = os.path.splitext(os.path.basename(image_dir))[0]
# if source_type == 'custom':
# image_name = os.path.splitext(image_name_true)[0]
# else:
# image_name = os.path.splitext(os.path.basename(image_dir))[0]
dino_img, clip_image = image_process(image_dir, clip_image_processor, dino_img_processor, device)
clip_feature = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
uncond_clip_feature = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[
-2]
dino_feature = dinov2(dino_img).last_hidden_state
uncond_dino_feature = dinov2(torch.zeros_like(dino_img)).last_hidden_state
samples = generate_samples(DiT_model, cfg_scale, sample_steps, clip_feature, dino_feature,
uncond_clip_feature, uncond_dino_feature, device, latent_size,
'dpm-solver')
samples = (samples / 0.3994218)
samples = rearrange(samples, "b c (f h) w -> b c f h w", f=4)
samples = vae_triplane.decode(samples)
samples = rearrange(samples, "b c f h w -> b f c h w")
samples = samples * std + mean
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
save_frames_path_out = os.path.join(save_path_base, image_name, video_name, 'out')
save_frames_path_outshow = os.path.join(save_path_base, image_name, video_name,'out_show')
save_frames_path_depth = os.path.join(save_path_base, image_name, video_name, 'depth')
os.makedirs(save_frames_path_out, exist_ok=True)
os.makedirs(save_frames_path_outshow, exist_ok=True)
os.makedirs(save_frames_path_depth, exist_ok=True)
img_ref = np.array(Image.open(image_dir))
img_ref_out = img_ref.copy()
img_ref = torch.from_numpy(img_ref.astype(np.float32) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0).to(device)
motion_app_dir = os.path.join(input_img_motion, image_name + '.npy')
motion_app = torch.tensor(np.load(motion_app_dir), dtype=torch.float32).unsqueeze(0).to(device)
id_motions = os.path.join(input_img_fvid, image_name + '.npy')
all_pose = json.loads(open(label_file_test).read())['labels']
all_pose = dict(all_pose)
if os.path.exists(id_motions):
coeff = np.load(id_motions).astype(np.float32)
coeff = torch.from_numpy(coeff).to(device).float().unsqueeze(0)
Faceverse.id_coeff = Faceverse.recon_model.split_coeffs(coeff)[0]
motion_dir = os.path.join(motion_base_dir, video_name)
exp_dir = os.path.join(exp_base_dir, video_name)
for frame_index, motion_name in enumerate(
tqdm(natsorted(os.listdir(motion_dir), alg=ns.PATH), desc="Processing Frames")):
exp_each_dir_img = os.path.join(exp_img_base_dir, video_name, motion_name.replace('.npy', '.png'))
exp_each_dir = os.path.join(exp_dir, motion_name)
motion_each_dir = os.path.join(motion_dir, motion_name)
# Load pose data
pose_key = os.path.join(video_name, motion_name.replace('.npy', '.png'))
cam2world_pose = LookAtPoseSampler.sample(
3.14 / 2 + yaw_range * np.sin(2 * 3.14 * frame_index / len(os.listdir(motion_dir))),
3.14 / 2 - 0.05 + pitch_range * np.cos(2 * 3.14 * frame_index / len(os.listdir(motion_dir))),
torch.tensor([0, 0, 0], device=device), radius=2.7, device=device)
pose_show = torch.cat([cam2world_pose.reshape(-1, 16),
FOV_to_intrinsics(fov_degrees=18.837, device=device).reshape(-1, 9)], 1).to(device)
pose = torch.tensor(np.array(all_pose[pose_key]).astype(np.float32)).float().unsqueeze(0).to(device)
# Load and resize expression image
exp_img = np.array(Image.open(exp_each_dir_img).resize((512, 512)))
# Load expression coefficients
exp_coeff = torch.from_numpy(np.load(exp_each_dir).astype(np.float32)).to(device).float().unsqueeze(0)
exp_target = Faceverse.make_driven_rendering(exp_coeff, res=256)
# Load motion data
motion = torch.tensor(np.load(motion_each_dir)).float().unsqueeze(0).to(device)
# img_ref_double = duplicate_batch(img_ref, batch_size=2)
# motion_app_double = duplicate_batch(motion_app, batch_size=2)
# motion_double = duplicate_batch(motion, batch_size=2)
# pose_double = torch.cat([pose_show, pose], dim=0)
# exp_target_double = duplicate_batch(exp_target, batch_size=2)
# samples_double = duplicate_batch(samples, batch_size=2)
# Select refine_net processing method
final_out = render_model(
img_ref, None, motion_app, motion, c=pose, mesh=exp_target,
triplane_recon=samples,
ws_avg=ws_avg, motion_scale=1.
)
# Process output image
final_out_show = trans(final_out['image_sr'][0].unsqueeze(0))
# final_out_notshow = trans(final_out['image_sr'][0].unsqueeze(0))
depth = final_out['image_depth'][0].unsqueeze(0)
depth = -depth
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 2 - 1
depth = trans(depth)
depth = np.repeat(depth[:, :, :], 3, axis=2)
# Save output images
frame_name = f'{str(frame_index).zfill(4)}.png'
Image.fromarray(depth, 'RGB').save(os.path.join(save_frames_path_depth, frame_name))
Image.fromarray(final_out_show, 'RGB').save(os.path.join(save_frames_path_out, frame_name))
# Image.fromarray(final_out_show, 'RGB').save(os.path.join(save_frames_path_outshow, frame_name))
# Generate videos
images_to_video(save_frames_path_out, os.path.join(save_path_base, image_name + video_name+ '_out.mp4'))
images_to_video(save_frames_path_depth, os.path.join(save_path_base, image_name + video_name+ '_depth.mp4'))
logging.info(f"✅ Video generation completed successfully!")
return os.path.join(save_path_base, image_name + video_name+ '_out.mp4'), os.path.join(save_path_base, image_name + video_name+'_depth.mp4')
except Exception as e:
return None, None
def get_image_base64(path):
with open(path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
return f"data:image/png;base64,{encoded_string}"
def assert_input_image(input_image):
if input_image is None:
raise gr.Error("No image selected or uploaded!")
@spaces.GPU(duration=30)
def process_image(input_image_dir, source_type, is_style, save_dir):
""" 🎯 处理 input_image,根据是否是示例图片执行不同逻辑 """
process_img_input_dir = os.path.join(save_dir, 'input_image')
process_img_save_dir = os.path.join(save_dir, 'processed_img')
base_name = os.path.basename(input_image_dir) # abc123.jpg
name_without_ext = os.path.splitext(base_name)[0] # abc123
image_name_true = name_without_ext + ".png"
os.makedirs(process_img_save_dir, exist_ok=True)
os.makedirs(process_img_input_dir, exist_ok=True)
if source_type == "example":
image = Image.open(input_image_dir)
return image, source_type, image_name_true
else:
# input_process_model.inference(input_image, process_img_save_dir)
shutil.copy(input_image_dir, process_img_input_dir)
input_process_model.inference(process_img_input_dir, process_img_save_dir, is_img=True, is_video=False)
files = os.listdir(os.path.join(process_img_save_dir, 'dataset/images512x512/input_image'))
image_files = [f for f in files if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.webp'))]
# 使用 difflib 查找相似文件名
matches = difflib.get_close_matches(image_name_true, image_files, n=1, cutoff=0.1)
closest_match = matches[0]
imge_dir = os.path.join(process_img_save_dir, 'dataset/images512x512/input_image', closest_match)
image = Image.open(imge_dir)
image_name_true = closest_match
return image, source_type, image_name_true # 这里替换成 处理用户上传图片的逻辑
@spaces.GPU(duration=30)
@torch.no_grad()
def style_transfer(processed_image, style_prompt, cfg, strength, save_base,image_name_true):
"""
🎭 这个函数用于风格转换
✅ 你可以在这里填入你的风格化代码
"""
src_img_pil = Image.open(processed_image)
img_name = os.path.basename(processed_image)
save_dir = os.path.join(save_base, 'style_img')
os.makedirs(save_dir, exist_ok=True)
control_image = generate_annotation(src_img_pil, max_faces=1)
print(style_prompt)
trg_img_pil = pipeline_sd(
prompt=style_prompt,
image=src_img_pil,
strength=strength,
control_image=Image.fromarray(control_image),
guidance_scale=cfg,
negative_prompt='worst quality, normal quality, low quality, low res, blurry',
num_inference_steps=30,
controlnet_conditioning_scale=1.5
)['images'][0]
trg_img_pil.save(os.path.join(save_dir, image_name_true))
return trg_img_pil # 🚨 这里需要替换成你的风格转换逻辑
def reset_flag():
return False
css = """
/* ✅ 让所有 Image 居中 + 自适应宽度 */
.gr-image img {
display: block;
margin-left: auto;
margin-right: auto;
max-width: 100%;
height: auto;
}
/* ✅ 让所有 Video 居中 + 自适应宽度 */
.gr-video video {
display: block;
margin-left: auto;
margin-right: auto;
max-width: 100%;
height: auto;
}
/* ✅ 可选:让按钮和 markdown 居中 */
#generate_block {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
margin-top: 1rem;
}
/* 可选:让整个容器宽一点 */
#main_container {
max-width: 1280px; /* ✅ 例如限制在 1280px 内 */
margin-left: auto; /* ✅ 水平居中 */
margin-right: auto;
padding-left: 1rem;
padding-right: 1rem;
}
"""
def launch_gradio_app():
styles = {
"Ghibli": "Ghibli style avatar, anime style",
"Pixar": "a 3D render of a face in Pixar style",
"Lego": "a 3D render of a head of a lego man 3D model",
"Greek Statue": "a FHD photo of a white Greek statue",
"Elf": "a FHD photo of a face of a beautiful elf with silver hair in live action movie",
"Zombie": "a FHD photo of a face of a zombie",
"Tekken": "a 3D render of a Tekken game character",
"Devil": "a FHD photo of a face of a devil in fantasy movie",
"Steampunk": "Steampunk style portrait, mechanical, brass and copper tones",
"Mario": "a 3D render of a face of Super Mario",
"Orc": "a FHD photo of a face of an orc in fantasy movie",
"Masque": "a FHD photo of a face of a person in masquerade",
"Skeleton": "a FHD photo of a face of a skeleton in fantasy movie",
"Peking Opera": "a FHD photo of face of character in Peking opera with heavy make-up",
"Yoda": "a FHD photo of a face of Yoda in Star Wars",
"Hobbit": "a FHD photo of a face of Hobbit in Lord of the Rings",
"Stained Glass": "Stained glass style, portrait, beautiful, translucent",
"Graffiti": "Graffiti style portrait, street art, vibrant, urban, detailed, tag",
"Pixel-art": "pixel art style portrait, low res, blocky, pixel art style",
"Retro": "Retro game art style portrait, vibrant colors",
"Ink": "a portrait in ink style, black and white image",
}
with gr.Blocks(analytics_enabled=False, delete_cache=[3600, 3600], css=css, elem_id="main_container") as demo:
logo_url = "./docs/AvatarArtist.png"
logo_base64 = get_image_base64(logo_url)
# 🚀 让 Logo 居中 & 标题对齐
gr.HTML(
f"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; margin-bottom: 20px;">
<img src="{logo_base64}" style="height:50px; margin-right: 15px; display: block;" onerror="this.style.display='none'"/>
<h1 style="font-size: 32px; font-weight: bold;">AvatarArtist: Open-Domain 4D Avatarization</h1>
</div>
"""
)
# 🚀 让按钮在一行对齐
gr.HTML(
"""
<div style="display: flex; justify-content: center; gap: 10px; margin-top: 10px;">
<a title="Website" href="https://kumapowerliu.github.io/AvatarArtist/" target="_blank" rel="noopener noreferrer">
<img src="https://img.shields.io/badge/Website-Visit-blue?style=for-the-badge&logo=GoogleChrome">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2503.19906" target="_blank" rel="noopener noreferrer">
<img src="https://img.shields.io/badge/arXiv-Paper-red?style=for-the-badge&logo=arXiv">
</a>
<a title="Github" href="https://github.com/ant-research/AvatarArtist" target="_blank" rel="noopener noreferrer">
<img src="https://img.shields.io/github/stars/ant-research/AvatarArtist?style=for-the-badge&logo=github&logoColor=white&color=orange">
</a>
</div>
"""
)
gr.HTML(
"""
<div style="color: inherit; text-align: left; font-size: 16px; line-height: 1.6; margin-top: 20px; padding: 16px; border-radius: 10px; border: 1px solid rgba(0,0,0,0.1); background-color: rgba(240, 240, 240, 0.6); backdrop-filter: blur(2px);">
<strong>🧑‍🎨 How to use this demo:</strong>
<ol style="margin-top: 10px; padding-left: 20px;">
<li><strong>Select or upload a source image</strong> – this will be the avatar's face.</li>
<li><strong>Select or upload a target video</strong> – the avatar will mimic this motion.</li>
<li><strong>Click the <em>Process Image</em> button</strong> – this prepares the source image to meet our model's input requirements.</li>
<li><strong>(Optional)</strong> Click <em>Apply Style</em> to change the appearance of the processed image – we offer a variety of fun styles to choose from!</li>
<li><strong>Click <em>Generate Avatar</em></strong> to create the final animated result driven by the target video.</li>
</ol>
<p style="margin-top: 10px;"><strong>🎨 Tip:</strong> Try different styles to get various artistic effects for your avatar!</p>
</div>
"""
)
# 🚀 添加重要提示框
gr.HTML(
"""
<div style="background-color: #FFDDDD; padding: 15px; border-radius: 10px; border: 2px solid red; text-align: center; margin-top: 20px;">
<h4 style="color: red; font-size: 18px;">
🚨 <strong style="color: red;">Important Notes:</strong> Please try to provide a <u>front-facing</u> or <u>full-face</u> image without obstructions.
</h4>
<p style="color: black; font-size: 16px;">
❌ Our demo does <strong style="color: black;">not</strong> support uploading videos with specific motions because processing requires time.<br>
✅ Feel free to check out our <a href="https://github.com/ant-research/AvatarArtist" target="_blank" style="color: red; font-weight: bold;">GitHub repository</a> to drive portraits using your desired motions.
</p>
</div>
"""
)
# DISPLAY
image_folder = "./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs"
video_folder = "./demo_data/target_video"
examples_images = sorted(
[os.path.join(image_folder, f) for f in os.listdir(image_folder) if
f.lower().endswith(('.png', '.jpg', '.jpeg'))]
)
examples_videos = sorted(
[os.path.join(video_folder, f) for f in os.listdir(video_folder) if f.lower().endswith('.mp4')]
)
print(examples_videos)
source_type = gr.State("example")
is_from_example = gr.State(value=True)
is_styled = gr.State(value=False)
working_dir = gr.State()
image_name_true = gr.State()
with gr.Row():
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="input_image"):
with gr.TabItem('🎨 Upload Image'):
input_image = gr.Image(
label="Upload Source Image",
value=os.path.join(image_folder, '02025.png'),
image_mode="RGB", height=512, container=True,
sources="upload", type="filepath"
)
def mark_as_example(example_image):
print("✅ mark_as_example called")
return "example", True, False
def mark_as_custom(user_image, is_from_example_flag):
print("✅ mark_as_custom called")
if is_from_example_flag:
print("⚠️ Ignored mark_as_custom triggered by example")
return "example", False, False
return "custom", False, False
input_image.change(
mark_as_custom,
inputs=[input_image, is_from_example],
outputs=[source_type, is_from_example, is_styled] # ✅ 只返回 source_type,不要输出 input_image
)
# ✅ 让 `Examples` 组件单独占一行,并绑定点击事件
with gr.Row():
example_component = gr.Examples(
examples=examples_images,
inputs=[input_image],
examples_per_page=10,
)
# ✅ 监听 `Examples` 的 `click` 事件
example_component.dataset.click(
fn=mark_as_example,
inputs=[input_image],
outputs=[source_type, is_from_example, is_styled]
)
with gr.Column(variant='panel' ):
with gr.Tabs(elem_id="input_video"):
with gr.TabItem('🎬 Target Video'):
video_input = gr.Video(
label="Select Target Motion",
height=512, container=True,interactive=False, format="mp4",
value=os.path.join(video_folder, 'Obama.mp4')
)
with gr.Row():
gr.Examples(
examples=examples_videos,
inputs=[video_input],
examples_per_page=10,
)
with gr.Column(variant='panel' ):
with gr.Tabs(elem_id="processed_image"):
with gr.TabItem('🖼️ Processed Image'):
processed_image = gr.Image(
label="Processed Image",
image_mode="RGB", type="filepath",
elem_id="processed_image",
height=512, container=True,
interactive=False
)
processed_image_button = gr.Button("🔧 Process Image", variant="primary")
with gr.Column(variant='panel' ):
with gr.Tabs(elem_id="style_transfer"):
with gr.TabItem('🎭 Style Transfer'):
style_image = gr.Image(
label="Style Image",
image_mode="RGB", type="filepath",
elem_id="style_image",
height=512, container=True,
interactive=False
)
style_choice = gr.Dropdown(
choices=list(styles.keys()),
label="Choose Style",
value="Pixar"
)
cfg_slider = gr.Slider(
minimum=3.0, maximum=10.0, value=7.5, step=0.1,
label="CFG Scale"
)
strength_slider = gr.Slider(
minimum=0.45, maximum=0.75, value=0.6, step=0.05,
label="SDEdit Strength"
)
style_button = gr.Button("🎨 Apply Style", interactive=False, elem_id="style_generate", variant='primary')
gr.Markdown(
"""
⚠️ **Please click 'Process Image' first.** Then use **Apply Style** to stylize the image.
`SDEdit Strength`: Higher values make the result closer to the target style; lower values preserve more of the original face.
Try to keep facial features recognizable — avoid excessive distortion.
"""
)
with gr.Row():
with gr.Tabs(elem_id="render_output"):
with gr.TabItem('🎥 Animation Results'):
# ✅ 让 `Generate Avatar` 按钮单独占一行
with gr.Row():
with gr.Column(scale=1, elem_id="generate_block", min_width=200):
submit = gr.Button('🚀 Generate Avatar', elem_id="avatarartist_generate", variant='primary',
interactive=False)
gr.Markdown("⬇️ Please click **Process Image** first before generating.",
elem_id="generate_tip")
# ✅ 让两个 `Animation Results` 窗口并排
with gr.Row():
output_video = gr.Video(
label="Generated Animation Input Video View",
format="mp4", height=512, width=512,
autoplay=True
)
output_video_1 = gr.Video(
label="Generated Animation Rotate View Depth",
format="mp4", height=512, width=512,
autoplay=True
)
def apply_style_and_mark(processed_image, style_choice, cfg, strength, working_dir, image_name_true):
try:
styled = style_transfer(processed_image, styles[style_choice], cfg, strength, working_dir, image_name_true)
return styled, True
except Exception as e:
return None, True
def process_image_and_enable_style(input_image, source_type, is_styled, wd):
try:
processed_result, updated_source_type, image_name_true = process_image(input_image, source_type, is_styled, wd)
return processed_result, updated_source_type, gr.update(interactive=True), gr.update(interactive=True), image_name_true
except Exception as e:
return None, updated_source_type, gr.update(interactive=False), gr.update(interactive=False), image_name_true
processed_image_button.click(
fn=prepare_working_dir,
inputs=[working_dir, is_styled],
outputs=[working_dir],
queue=False,
).success(
fn=process_image_and_enable_style,
inputs=[input_image, source_type, is_styled, working_dir],
outputs=[processed_image, source_type, style_button, submit, image_name_true],
queue=True
)
style_button.click(
fn=apply_style_and_mark,
inputs=[processed_image, style_choice, cfg_slider, strength_slider, working_dir, image_name_true],
outputs=[style_image, is_styled]
)
submit.click(
fn=avatar_generation,
inputs=[processed_image, working_dir, video_input, source_type, is_styled, style_image, image_name_true],
outputs=[output_video, output_video_1], # ⏳ 稍后展示视频
queue=True
)
demo.queue()
demo.launch(server_name="0.0.0.0")
if __name__ == '__main__':
import torch.multiprocessing as mp
import transformers
mp.set_start_method('spawn', force=True)
# logging.info("Environment Variables: %s" % os.environ)
# logging.info("Installing CUDA extensions...")
# if _get_output(["nvcc", "--version"]) is None:
# logging.info("Installing CUDA toolkit...")
# install_cuda_toolkit()
# logging.info("installCUDA: %s" % _get_output(["nvcc", "--version"]))
# else:
# logging.info("Detected CUDA: %s" % _get_output(["nvcc", "--version"]))
# print("CUDA_HOME =", os.environ.get("CUDA_HOME"))
# from torch.utils.cpp_extension import CUDA_HOME
# print("CUDA_HOME from PyTorch:", CUDA_HOME)
launch_pretrained()
image_folder = "./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs"
example_img_names = os.listdir(image_folder)
render_model, sample_steps, DiT_model, \
vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, std, mean, ws_avg, device, input_process_model = model_define()
controlnet_path = './pretrained_model/control'
controlnet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=torch.float16
)
sd_path = './pretrained_model/sd21'
pipeline_sd = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
sd_path, torch_dtype=torch.float16,
use_safetensors=True, controlnet=controlnet, variant="fp16"
).to(device)
pipeline_sd.scheduler=DPMSolverMultistepScheduler.from_config(pipeline_sd.scheduler.config, use_karras_sigmas=True)
demo_cam = False
base_coff = np.load(
'pretrained_model/temp.npy').astype(
np.float32)
base_coff = torch.from_numpy(base_coff).float()
Faceverse = Faceverse_manager(device=device, base_coeff=base_coff)
launch_gradio_app()