Kuautli commited on
Commit
97e7318
verified
1 Parent(s): 0b29bd8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -7
app.py CHANGED
@@ -34,21 +34,23 @@ def index():
34
  sentiment_count = None
35
 
36
  current_directory = os.getcwd()
37
- print("Directorio de trabajo actual:", current_directory)
38
 
39
  if request.method == "POST":
40
  url = request.form["url"]
41
  if url:
 
42
  video_details = clustering.get_youtube_video_details(url, api_key)
43
  comments_df = clustering.get_youtube_comments(api_key, url)
 
44
  comments_df = clustering.add_normalized_embeddings_to_dataframe(
45
  comments_df, "comment"
46
  )
47
-
48
  comments_df["published_at"] = pd.to_datetime(
49
  comments_df["published_at"]
50
  ).dt.date
51
-
52
  comments_df = clustering.classify_sentiment_df(comments_df)
53
  comments_df.to_pickle(
54
  "./data/Comentarios-Youtube/comments_df.pkl"
@@ -64,14 +66,14 @@ def index():
64
  umap_df, min_eps, max_eps = clustering.transform_embeddings(
65
  comments_df, embeddings_col="embeddings"
66
  )
67
-
68
  image_path = os.path.join("static", "wordcloud.png")
69
  clustering.plot_wordcloud(comments_df, text_column="comment", output_filename=image_path)
70
 
71
  total = comments_df.shape[0]
72
-
73
  min_items_by_cluster = clustering.determine_min_items_by_cluster(total)
74
-
75
  (
76
  cluster_assignments,
77
  cluster_counts,
@@ -84,7 +86,7 @@ def index():
84
  threshold_values=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
85
  embeddings_col="embeddings"
86
  )
87
-
88
  labels, source, target, values, comments = clustering.build_sankey_data(
89
  cluster_assignments,
90
  cluster_counts,
 
34
  sentiment_count = None
35
 
36
  current_directory = os.getcwd()
37
+ print("Iniciando procesamiento...")
38
 
39
  if request.method == "POST":
40
  url = request.form["url"]
41
  if url:
42
+ print("Obteniendo datos")
43
  video_details = clustering.get_youtube_video_details(url, api_key)
44
  comments_df = clustering.get_youtube_comments(api_key, url)
45
+ print("Generando embeddings")
46
  comments_df = clustering.add_normalized_embeddings_to_dataframe(
47
  comments_df, "comment"
48
  )
49
+ print("Procesamiento de los datos")
50
  comments_df["published_at"] = pd.to_datetime(
51
  comments_df["published_at"]
52
  ).dt.date
53
+ print("Clasificaci贸n de los sentimientos")
54
  comments_df = clustering.classify_sentiment_df(comments_df)
55
  comments_df.to_pickle(
56
  "./data/Comentarios-Youtube/comments_df.pkl"
 
66
  umap_df, min_eps, max_eps = clustering.transform_embeddings(
67
  comments_df, embeddings_col="embeddings"
68
  )
69
+ print("Generaci贸n de wordcloud")
70
  image_path = os.path.join("static", "wordcloud.png")
71
  clustering.plot_wordcloud(comments_df, text_column="comment", output_filename=image_path)
72
 
73
  total = comments_df.shape[0]
74
+ print("Evaluaci贸n de m茅tricas")
75
  min_items_by_cluster = clustering.determine_min_items_by_cluster(total)
76
+ print("Modelado")
77
  (
78
  cluster_assignments,
79
  cluster_counts,
 
86
  threshold_values=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
87
  embeddings_col="embeddings"
88
  )
89
+ print("Creaci贸n de gr谩fico de Sankey")
90
  labels, source, target, values, comments = clustering.build_sankey_data(
91
  cluster_assignments,
92
  cluster_counts,