Spaces:
Runtime error
Runtime error
import os | |
import pandas as pd | |
import plotly.io as pio | |
import clustering | |
from dotenv import load_dotenv | |
from flask import Flask, render_template, request | |
import logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s', | |
datefmt='%Y-%m-%d %H:%M:%S' | |
) | |
def log_message(message): | |
"""""" | |
logging.info(message) | |
if os.getenv("HUGGINGFACE_HUB_CACHE") is None: | |
load_dotenv() | |
api_key = os.getenv("youtube_api_key") | |
app = Flask(__name__) | |
app.logger.setLevel(logging.ERROR) | |
app.config["PROPAGATE_EXCEPTIONS"] = False | |
RANDOM_STATE = 333 | |
def convert_graph_to_html(graph, full_html=False): | |
return pio.to_html(graph, full_html=full_html) if graph else None | |
def index(): | |
video_details = None | |
k_distance_graph = None | |
scores_graph = None | |
sankey_graph = None | |
image_path = None | |
sentiment_daily_graph = None | |
sentiment_count = None | |
current_directory = os.getcwd() | |
log_message("Iniciando procesamiento...") | |
if request.method == "POST": | |
url = request.form["url"] | |
if url: | |
log_message("Obteniendo datos de Youtube") | |
video_details = clustering.get_youtube_video_details(url, api_key) | |
comments_df = clustering.get_youtube_comments(api_key, url) | |
log_message("Generando embeddings") | |
comments_df = clustering.add_normalized_embeddings_to_dataframe( | |
comments_df, "comment" | |
) | |
log_message("Procesamiento de los datos") | |
comments_df["published_at"] = pd.to_datetime( | |
comments_df["published_at"] | |
).dt.date | |
log_message("Clasificaci贸n de los sentimientos") | |
comments_df = clustering.classify_sentiment_df(comments_df) | |
comments_df.to_pickle( | |
"./data/Comentarios-Youtube/comments_df.pkl" | |
) | |
comments_df = pd.read_pickle( | |
"./data/Comentarios-Youtube/comments_df.pkl" | |
) | |
sentiment_count = comments_df["sentimiento"].value_counts().to_dict() | |
sentiment_daily_graph = clustering.plot_sentiment_daily(comments_df) | |
sentiment_daily_graph = convert_graph_to_html(sentiment_daily_graph) | |
umap_df, min_eps, max_eps = clustering.transform_embeddings( | |
comments_df, embeddings_col="embeddings" | |
) | |
log_message("Generaci贸n de wordcloud") | |
image_path = os.path.join("static", "wordcloud.png") | |
clustering.plot_wordcloud(comments_df, text_column="comment", output_filename=image_path) | |
total = comments_df.shape[0] | |
min_items_by_cluster = clustering.determine_min_items_by_cluster(total) | |
log_message("Modelado y generaci贸n de m茅tricas") | |
( | |
cluster_assignments, | |
cluster_counts, | |
calinski_harabasz_scores, | |
silhouette_scores, | |
most_similar_comments, | |
umap_df, | |
) = clustering.perform_clustering( | |
umap_df, min_eps, max_eps, n=10, | |
embeddings_col="embeddings" | |
) | |
log_message("Creaci贸n de gr谩fico de Sankey") | |
labels, source, target, values, comments = clustering.build_sankey_data( | |
cluster_assignments, | |
cluster_counts, | |
most_similar_comments, | |
min_items_by_cluster=min_items_by_cluster, | |
) | |
sankey_graph = clustering.plot_sankey( | |
labels, source, target, values, comments, height=1000, width=1200 | |
) | |
sankey_graph = convert_graph_to_html(sankey_graph) | |
scores_graph, _ = clustering.plot_clustering_metric( | |
silhouette_scores, calinski_harabasz_scores | |
) | |
scores_graph = convert_graph_to_html(scores_graph) | |
return render_template( | |
"index.html", | |
video_details=video_details, | |
k_distance_graph=k_distance_graph, | |
sankey_graph=sankey_graph, | |
scores_graph=scores_graph, | |
wordcloud_path=image_path, | |
sentiment_daily_graph=sentiment_daily_graph, | |
sentiment_count=sentiment_count, | |
) | |
# gunicorn -b 0.0.0.0:5000 app_clustering.app:app | |
# http://172.20.0.2:5000/ | |
# http://0.0.0.0:5000/ | |
if __name__ == "__main__": | |
app.run(host='0.0.0.0', port=7860) |