Spaces:
Runtime error
Runtime error
File size: 28,817 Bytes
ec5679e a938fa5 674dbba 36ae768 ec5679e 36ae768 ec5679e 36ae768 ec5679e 36ae768 ec5679e 36ae768 ec5679e a03604c ec5679e 0b29bd8 a03604c e43ee2d d1607d8 e22fec3 e187fca ec5679e 674dbba ec5679e d1607d8 ec5679e 8cc3b3e ec5679e 8cc3b3e ec5679e d3e5410 ec5679e d3e5410 ec5679e d3e5410 ec5679e da0877a ec5679e d3e5410 ec5679e 36ae768 ec5679e 36ae768 ec5679e 36ae768 66d1067 36ae768 66d1067 36ae768 ec5679e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
import os
import re
import unicodedata
from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import umap
from dotenv import load_dotenv
from googleapiclient.discovery import build
from plotly.subplots import make_subplots
from scipy.spatial.distance import cosine
from sentence_transformers import SentenceTransformer
from sklearn import set_config
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import (
calinski_harabasz_score,
pairwise_distances,
silhouette_score,
)
from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import normalize
from transformers import pipeline
from wordcloud import WordCloud
from concurrent.futures import ThreadPoolExecutor
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
def log_message(message):
""""""
logging.info(message)
try:
import torch
device = 0 if torch.cuda.is_available() else -1
embeddings_device = "cuda"
batch_size = 128
except ImportError:
device = -1 # Si no está instalado, forzar uso de CPU
embeddings_device = "cpu"
batch_size = 32
api_key = os.getenv("youtube_api_key")
RANDOM_STATE = 333
stopwords_es = [
"a",
"al",
"algo",
"algún",
"alguna",
"algunas",
"alguno",
"algunos",
"ante",
"antes",
"bajo",
"bastante",
"bien",
"cada",
"casi",
"como",
"con",
"cuanto",
"de",
"del",
"desde",
"donde",
"durante",
"el",
"ella",
"ellos",
"en",
"encima",
"ese",
"eso",
"esta",
"estas",
"este",
"estos",
"fuera",
"hay",
"la",
"las",
"le",
"lo",
"los",
"más",
"me",
"mi",
"mí",
"menos",
"mismo",
"mucho",
"muy",
"nada",
"ni",
"no",
"nos",
"nuestro",
"nuestra",
"o",
"os",
"para",
"pero",
"poco",
"por",
"que",
"quien",
"si",
"sólo",
"sobre",
"su",
"sus",
"te",
"tu",
"tus",
"un",
"una",
"unas",
"uno",
"unos",
"vos",
"ya",
"yo",
"además",
"alrededor",
"aún",
"bajo",
"bien",
"cada",
"cierta",
"ciertas",
"como",
"con",
"de",
"debe",
"dentro",
"dos",
"ella",
"en",
"entonces",
"entre",
"esa",
"esos",
"está",
"hasta",
"incluso",
"lejos",
"lo",
"luego",
"medio",
"mientras",
"muy",
"nunca",
"o",
"otro",
"para",
"pero",
"poco",
"por",
"se",
"si",
"sin",
"sobre",
"tan",
"te",
"ten",
"tendría",
"todos",
"total",
"un",
"una",
"uno",
"ustedes",
"yo",
"y",
"es",
"son",
"solo",
"les",
]
def normalize_text(text):
text = unicodedata.normalize("NFKD", text).encode("ASCII", "ignore").decode("ASCII")
text = text.lower()
return text
def remove_stopwords(text, stopwords):
# Divide el texto en palabras y elimina las stopwords
return [word for word in text.split() if word not in stopwords]
def plot_wordcloud(data, text_column, output_filename=None):
text = " ".join(data[text_column])
stopwords_set = set(stopwords_es)
normalized_text = normalize_text(text)
cleaned_text = remove_stopwords(normalized_text, stopwords_set)
filtered_text = replace_html_entities(" ".join(cleaned_text))
# Crear la nube de palabras usando los conteos
wordcloud = WordCloud(
width=800, height=400, background_color="white", normalize_plurals=True
).generate(filtered_text)
# Mostrar la nube de palabras
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
if output_filename:
plt.savefig(output_filename, format="png")
plt.close()
return output_filename
def extract_video_id(url):
"""
Extrae el video_id de una URL de YouTube.
Parámetros:
- url: str, la URL del video de YouTube.
Retorna:
- video_id: str, el identificador del video de YouTube.
"""
# Expresión regular para encontrar el video_id en una URL de YouTube
pattern = r"(?:https?:\/\/)?(?:www\.)?(?:youtube\.com\/(?:[^\/\n\s]+\/\S+\/|(?:v|e(?:mbed)?)\/|\S*?[?&]v=)|youtu\.be\/)([a-zA-Z0-9_-]{11})"
match = re.search(pattern, url)
if match:
return match.group(1)
else:
raise ValueError("No se pudo encontrar un ID de video en la URL proporcionada.")
def get_youtube_video_details(url, api_key):
"""
Obtiene detalles de un video de YouTube usando la API de YouTube Data v3.
:param video_id: ID del video de YouTube.
:param api_key: Clave de API de YouTube Data v3.
:return: Un diccionario con el nombre del video, el canal, el número de vistas y el número de comentarios.
"""
try:
youtube = build("youtube", "v3", developerKey=api_key)
video_id = extract_video_id(url)
request = youtube.videos().list(part="snippet,statistics", id=video_id)
response = request.execute()
if "items" in response and len(response["items"]) > 0:
video = response["items"][0]
details = {
"title": video["snippet"]["title"],
"channel_title": video["snippet"]["channelTitle"],
"view_count": video["statistics"].get("viewCount", "No disponible"),
"comment_count": video["statistics"].get(
"commentCount", "No disponible"
),
}
return details
else:
return {"error": "No se encontró el video con el ID proporcionado."}
except Exception as e:
return {"error": str(e)}
def get_youtube_comments(api_key, url, max_results=100):
"""
Obtiene comentarios de un video de YouTube y los convierte en un DataFrame de pandas.
Parámetros:
- api_key: str, la clave de API de YouTube.
- video_id: str, el ID del video de YouTube.
- max_results: int, el número máximo de comentarios a obtener por solicitud (predeterminado es 100).
Retorna:
- df: pandas DataFrame, contiene los comentarios del video.
"""
# Crear el servicio de la API de YouTube
youtube = build("youtube", "v3", developerKey=api_key)
# Solicitar los comentarios del video
video_id = extract_video_id(url)
request = youtube.commentThreads().list(
part="snippet", videoId=video_id, maxResults=max_results
)
response = request.execute()
# Lista para almacenar los datos de los comentarios
comments_data = []
# Procesar y almacenar los comentarios en la lista
for item in response["items"]:
comment = item["snippet"]["topLevelComment"]["snippet"]["textDisplay"]
author = item["snippet"]["topLevelComment"]["snippet"]["authorDisplayName"]
published_at = item["snippet"]["topLevelComment"]["snippet"]["publishedAt"]
comments_data.append(
{"author": author, "comment": comment, "published_at": published_at}
)
# Paginar y obtener más comentarios si hay más disponibles
next_page_token = response.get("nextPageToken")
while next_page_token:
request = youtube.commentThreads().list(
part="snippet",
videoId=video_id,
pageToken=next_page_token,
maxResults=max_results,
)
response = request.execute()
for item in response["items"]:
comment = item["snippet"]["topLevelComment"]["snippet"]["textDisplay"]
author = item["snippet"]["topLevelComment"]["snippet"]["authorDisplayName"]
published_at = item["snippet"]["topLevelComment"]["snippet"]["publishedAt"]
comments_data.append(
{"author": author, "comment": comment, "published_at": published_at}
)
next_page_token = response.get("nextPageToken")
# Convertir la lista de comentarios en un DataFrame de pandas
df = pd.DataFrame(comments_data)
return df
def add_normalized_embeddings_to_dataframe(
data, text_column, model_name="paraphrase-multilingual-MiniLM-L12-v2"
):
"""
Genera y normaliza embeddings para una columna de texto en un DataFrame y agrega estos embeddings como nuevas columnas.
Parámetros:
- data: pandas DataFrame, el DataFrame que contiene la columna de texto.
- text_column: str, el nombre de la columna en el DataFrame que contiene el texto para generar embeddings.
- model_name: str, el nombre del modelo de SentenceTransformer a utilizar.
- batch_size: int, el tamaño del lote para procesamiento eficiente.
Retorna:
- data: pandas DataFrame, el DataFrame original con las nuevas columnas de embeddings normalizados.
"""
model = SentenceTransformer(model_name, device=embeddings_device)
sentences = data[text_column].tolist()
embeddings = model.encode(sentences, batch_size=batch_size, convert_to_numpy=True, device=device)
normalized_embeddings = normalize(embeddings, norm="l2")
data["embeddings"] = list(normalized_embeddings)
return data
def plot_k_distance(data, threshold=0.01, quantile=0.95):
# embeddings_matrix = np.array(data["embeddings"].tolist())
embeddings_matrix = data.copy()
for threshold in [threshold, 0.05, 0.1, 0.2]:
min_samples = int(round(data.shape[0] * threshold, 0))
n_neighbors = min_samples - 1
if n_neighbors > 2:
nn = NearestNeighbors(
n_neighbors=n_neighbors, algorithm="auto", metric="cosine", n_jobs=-1
)
nn.fit(embeddings_matrix)
distances, _ = nn.kneighbors(embeddings_matrix)
k_distances = distances[:, -1]
min_eps = np.percentile(k_distances, quantile * 100)
k_distances = np.sort(k_distances)
fig = go.Figure()
fig.add_trace(go.Scatter(y=k_distances, mode="lines", name="k-distances"))
fig.add_hline(
y=min_eps,
line=dict(color="red", dash="dash"),
name=f"min_eps = {min_eps:.2f}",
)
fig.update_layout(
title="k-Distance Graph",
xaxis_title="Index",
yaxis_title="Distance",
width=800,
height=600,
template="plotly_dark",
)
return fig, min_eps
return None, None
def find_most_similar_comment(cluster_data, avg_embedding):
similarities = [
1 - cosine(avg_embedding, emb) for emb in cluster_data["embeddings"]
]
most_similar_index = np.argmax(similarities)
return cluster_data.iloc[most_similar_index]["comment"]
def format_text(text, line_length=50):
"""
Formatea el texto agregando saltos de línea cada 'line_length' caracteres.
:param text: El texto a formatear.
:param line_length: La longitud máxima de cada línea (por defecto 50 caracteres).
:return: El texto formateado con saltos de línea.
"""
# Divide el texto en partes de longitud 'line_length'
formatted_text = "<br>".join(
text[i : i + line_length] for i in range(0, len(text), line_length)
)
return formatted_text
def replace_html_entities(text):
"""
Reemplaza entidades HTML conocidas en el texto con sus caracteres correspondientes.
:param text: El texto con entidades HTML.
:return: El texto con las entidades reemplazadas.
"""
replacements = {
""": '"',
"&": "&",
"<": "<",
">": ">",
"<br>": "\n", # Reemplazar <br> con salto de línea
}
for entity, char in replacements.items():
text = text.replace(entity, char)
return text
def plot_sentiment_global(
data,
sentimiento_col="sentimiento",
title="Evolución de Comentarios por Sentimiento",
width=1200,
height=600,
):
""""""
df_global = data[sentimiento_col].value_counts().reset_index()
df_global.columns = [sentimiento_col, "count"]
fig_global = go.Figure()
color_palette = {"positivo": "#138d75", "negativo": "#a93226", "neutro": "#909497"}
for sentimiento in df_global[sentimiento_col].unique():
df_sentimiento = df_global[df_global[sentimiento_col] == sentimiento]
fig_global.add_trace(
go.Bar(
x=df_sentimiento[sentimiento_col],
y=df_sentimiento["count"],
text=df_sentimiento["count"],
textposition="inside",
insidetextanchor="middle",
name=sentimiento,
marker=dict(color=color_palette[sentimiento]),
)
)
fig_global.update_layout(
title=f"{title} - Global",
xaxis_title="Sentimiento",
yaxis_title="Número Total de Comentarios",
legend_title="Sentimiento",
template="plotly_dark",
width=width,
height=height,
)
return fig_global
def plot_sentiment_daily(
data,
fecha_col="published_at",
sentimiento_col="sentimiento",
title="Evolución de Comentarios por Sentimiento",
width=1200,
height=600,
):
""""""
data[fecha_col] = pd.to_datetime(data[fecha_col])
df_grouped = (
data.groupby([pd.Grouper(key=fecha_col, freq="D"), sentimiento_col])
.size()
.reset_index(name="count")
)
df_grouped["total_daily"] = df_grouped.groupby(pd.Grouper(key=fecha_col, freq="D"))[
"count"
].transform("sum")
df_grouped["percentage"] = df_grouped["count"] / df_grouped["total_daily"] * 100
fig_daily = go.Figure()
color_palette = {"positivo": "#138d75", "negativo": "#a93226", "neutro": "#909497"}
for sentimiento in data[sentimiento_col].unique():
df_sentimiento = df_grouped[df_grouped[sentimiento_col] == sentimiento]
fig_daily.add_trace(
go.Bar(
x=df_sentimiento[fecha_col],
y=df_sentimiento["total_daily"],
name=sentimiento,
text=df_sentimiento["count"],
texttemplate="%{text}",
textposition="inside",
insidetextanchor="middle",
customdata=df_sentimiento["percentage"],
hovertemplate="<b>Fecha</b>: %{x}<br><b>Sentimiento</b>: %{name}<br><b>Porcentaje</b>: %{customdata:.1f}%<br><b>Total de Comentarios</b>: %{text}<extra></extra>", # Información emergente con porcentaje y total
marker=dict(color=color_palette[sentimiento]),
)
)
fig_daily.update_layout(
title=f"{title} - Por Día",
xaxis_title="Fecha",
yaxis_title="Total de Comentarios",
legend_title="Sentimiento",
barmode="stack",
template="plotly_dark",
width=width,
height=height,
)
return fig_daily
def create_3d_umap_plot(data):
def calculate_sentiment_info(data):
cluster_sentiments = (
data.groupby("Cluster")["sentimiento"].value_counts().unstack(fill_value=0)
)
total_by_cluster = cluster_sentiments.sum(axis=1)
sentiment_percentages = (
cluster_sentiments.div(total_by_cluster, axis=0) * 100
).round(2)
sentiment_info = {}
for cluster in total_by_cluster.index:
info = [
f"{sentiment}: {count} ({percent}%)"
for sentiment, count, percent in zip(
cluster_sentiments.columns,
cluster_sentiments.loc[cluster],
sentiment_percentages.loc[cluster],
)
]
sentiment_info[cluster] = (
f"Total {total_by_cluster[cluster]}<br>" + "<br>".join(info)
)
return sentiment_info
fig = go.Figure()
fig.add_trace(
go.Scatter3d(
x=data["UMAP1"],
y=data["UMAP2"],
z=data["UMAP3"],
mode="markers",
marker=dict(
size=3,
color=data["Cluster"],
colorscale="Viridis",
colorbar=dict(title="Cluster"),
),
text=data["sentimiento"],
name="Puntos",
)
)
fig.update_layout(
scene=dict(xaxis_title="UMAP 1", yaxis_title="UMAP 2", zaxis_title="UMAP 3"),
template="plotly_dark",
title="Visualización 3D con UMAP y Clustering",
)
sentiment_info = calculate_sentiment_info(data)
hovertemplate = (
"Cluster: %{marker.color}<br>"
+ data["Cluster"].map(sentiment_info)
+ "<br>"
+ "<extra></extra>"
)
fig.update_traces(hovertemplate=hovertemplate)
fig.show()
def perform_clustering(
data, min_eps, max_eps=0.95, n=5, threshold_values=None, embeddings_col="embeddings"
):
embeddings_matrix = np.array(data[embeddings_col].tolist())
if not threshold_values:
threshold_values = np.round(np.linspace(min_eps, max_eps, n), 6).astype(float)
log_message(f"perform_clustering {threshold_values}")
# threshold_values = np.linspace(min_eps, max_eps, n)
cluster_assignments = {}
cluster_counts = {}
calinski_harabasz_scores = {}
silhouette_scores = {}
most_similar_comments = {}
for distance_threshold in threshold_values:
log_message(distance_threshold)
clustering = AgglomerativeClustering(
n_clusters=None,
distance_threshold=distance_threshold,
linkage="complete",
metric="cosine",
)
data[f"cluster_{distance_threshold}"] = clustering.fit_predict(
embeddings_matrix
)
cluster_assignments[distance_threshold] = data[f"cluster_{distance_threshold}"]
cluster_counts[distance_threshold] = data[
f"cluster_{distance_threshold}"
].value_counts()
labels = data[f"cluster_{distance_threshold}"]
# Calcular Calinski-Harabasz Score
if len(np.unique(labels)) > 1:
# Recalcular matriz de distancias con base en los clusters
euclidean_distances = pairwise_distances(
embeddings_matrix, metric="euclidean"
)
ch_score = calinski_harabasz_score(euclidean_distances, labels)
ch_score = round(ch_score, 2)
else:
ch_score = -1 # Valor predeterminado si solo hay un clúster
calinski_harabasz_scores[distance_threshold] = ch_score
# Calcular Silhouette Score
if len(np.unique(labels)) > 1:
sil_score = silhouette_score(embeddings_matrix, labels, metric="cosine")
sil_score = round(sil_score, 2)
else:
sil_score = -1 # Valor predeterminado si solo hay un clúster
silhouette_scores[distance_threshold] = sil_score
# Placeholder for finding the most similar comment function
most_similar_comments[distance_threshold] = {}
for cluster_id in np.unique(labels):
cluster_data = data[data[f"cluster_{distance_threshold}"] == cluster_id]
avg_embedding = np.mean(cluster_data[embeddings_col].tolist(), axis=0)
# Replace with your actual implementation
most_similar_comment = find_most_similar_comment(
cluster_data, avg_embedding
)
most_similar_comments[distance_threshold][cluster_id] = most_similar_comment
return (
cluster_assignments,
cluster_counts,
calinski_harabasz_scores,
silhouette_scores,
most_similar_comments,
data,
)
def build_sankey_data(
cluster_assignments,
cluster_counts,
most_similar_comments,
min_items_by_cluster=10,
):
labels = []
source = []
target = []
values = []
comments = []
sorted_threshold_values = sorted(cluster_assignments.keys())
log_message(f"build_sankey_data {sorted_threshold_values}")
valid_clusters = {}
for threshold in sorted_threshold_values:
print(threshold)
valid_clusters[threshold] = [
j
for j in np.unique(cluster_assignments[threshold])
if cluster_counts[threshold].get(j, 0) >= min_items_by_cluster
]
for i, threshold in enumerate(sorted_threshold_values):
for j in valid_clusters[threshold]:
cluster_name = (
f"{j} (d={threshold})\nTotal: {cluster_counts[threshold].get(j, 0)}"
)
if cluster_name not in labels:
labels.append(cluster_name)
comments.append(
format_text(
replace_html_entities(
most_similar_comments[threshold].get(j, "N/A")
)
)
)
if i > 0:
prev_threshold = sorted_threshold_values[i - 1]
for prev_cluster in valid_clusters[prev_threshold]:
for curr_cluster in valid_clusters[threshold]:
count = np.sum(
(cluster_assignments[prev_threshold] == prev_cluster)
& (cluster_assignments[threshold] == curr_cluster)
)
if count > 0:
source_idx = labels.index(
f"{prev_cluster} (d={prev_threshold})\nTotal: {cluster_counts[prev_threshold].get(prev_cluster, 0)}"
)
target_idx = labels.index(
f"{curr_cluster} (d={threshold})\nTotal: {cluster_counts[threshold].get(curr_cluster, 0)}"
)
source.append(source_idx)
target.append(target_idx)
values.append(count)
return (labels, source, target, values, comments)
def plot_sankey(labels, source, target, values, comments, width=None, height=None):
fig = go.Figure(
go.Sankey(
node=dict(
pad=15,
thickness=20,
line=dict(color="black", width=0),
label=labels,
hovertemplate="<b>%{label}</b><br>"
+ "<br><b>Commentario:</b><br>%{customdata}<extra></extra>",
customdata=comments,
),
link=dict(
source=source,
target=target,
value=values,
hovertemplate="<extra></extra>",
),
)
)
fig.update_layout(
title_text="Sankey Diagram of Agglomerative Clustering Transitions",
font_size=14,
width=width,
height=height,
template="plotly_dark",
)
return fig
def plot_clustering_metric(silhouette_scores, calinski_scores):
"""
Genera un gráfico que muestra los puntajes de silhouette y Calinski-Harabasz frente a los umbrales de distancia,
con dos ejes Y diferentes y marca el umbral con el mejor puntaje de silhouette.
Args:
silhouette_scores (dict): Un diccionario donde las claves son umbrales de distancia
y los valores son puntajes de silhouette correspondientes.
calinski_scores (dict): Un diccionario donde las claves son umbrales de distancia
y los valores son puntajes de Calinski-Harabasz correspondientes.
Returns:
fig (plotly.graph_objects.Figure): Un objeto Figure de Plotly con el gráfico generado.
"""
# Obtener los umbrales de distancia y puntajes
silhouette_thresholds = sorted(silhouette_scores.keys())
silhouette_metric_scores = [silhouette_scores[t] for t in silhouette_thresholds]
calinski_thresholds = sorted(calinski_scores.keys())
calinski_metric_scores = [calinski_scores[t] for t in calinski_thresholds]
# Determinar el mejor umbral basado en el puntaje más alto de silhouette
best_threshold = max(silhouette_scores, key=silhouette_scores.get)
# Crear el gráfico con dos ejes Y
fig = make_subplots(specs=[[{"secondary_y": True}]])
# Añadir la traza para el puntaje de silhouette
fig.add_trace(
go.Scatter(
x=silhouette_thresholds,
y=silhouette_metric_scores,
mode="lines+markers",
name="Silhouette Score",
marker=dict(color="red", size=10),
line=dict(color="red", width=2),
text=[
f"Threshold: {t}<br>Silhouette Score: {s}"
for t, s in zip(silhouette_thresholds, silhouette_metric_scores)
],
hoverinfo="text",
),
secondary_y=False, # Eje Y izquierdo
)
# Añadir la traza para el puntaje de Calinski-Harabasz
fig.add_trace(
go.Scatter(
x=calinski_thresholds,
y=calinski_metric_scores,
mode="lines+markers",
name="Calinski-Harabasz Score",
marker=dict(color="blue", size=10),
line=dict(color="blue", width=2),
text=[
f"Threshold: {t}<br>Calinski-Harabasz Score: {s}"
for t, s in zip(calinski_thresholds, calinski_metric_scores)
],
hoverinfo="text",
),
secondary_y=True, # Eje Y derecho
)
# Añadir una línea vertical para el mejor umbral
fig.add_vline(
x=best_threshold,
line=dict(color="green", width=2, dash="dash"),
annotation_text=f"Best Threshold: {best_threshold}",
annotation_position="top right",
)
# Configurar el diseño del gráfico
fig.update_layout(
title="Clustering Metrics vs. Threshold Distance",
xaxis_title="Threshold Distance",
yaxis_title="Silhouette Score",
yaxis2_title="Calinski-Harabasz Score",
font=dict(size=12),
width=800,
height=600,
template="plotly_dark",
)
return fig, best_threshold
classifier = pipeline(
"sentiment-analysis",
model="nlptown/bert-base-multilingual-uncased-sentiment",
truncation=True,
device=device
)
def map_sentiment(estrella):
if estrella in ["1 star", "2 stars"]:
return "negativo"
elif estrella == "3 stars":
return "neutro"
elif estrella in ["4 stars", "5 stars"]:
return "positivo"
def classify_sentiment_df(data, comment_col="comment", batch_size=32, num_threads=8):
comentarios = data[comment_col].tolist()
if device == 0: # Si hay GPU, procesar en batch
resultados = classifier(comentarios, batch_size=batch_size)
data["sentimiento"] = [map_sentiment(r["label"]) for r in resultados]
data["confianza"] = [r["score"] for r in resultados]
else: # Si no hay GPU, usar CPU con hilos
def classify_sentiment(texto):
resultado = classifier(texto)[0]
return map_sentiment(resultado["label"]), resultado["score"]
with ThreadPoolExecutor(max_workers=num_threads) as executor:
resultados = list(executor.map(classify_sentiment, comentarios))
sentimientos, confianzas = zip(*resultados)
data["sentimiento"] = sentimientos
data["confianza"] = confianzas
return data
def transform_embeddings(
data, embeddings_col="embeddings", n_components=3, random_seed=42
):
# Convertir embeddings a matriz numpy
embeddings_matrix = np.array(data[embeddings_col].tolist())
# Aplicar UMAP para reducción de dimensionalidad
umap_model = umap.UMAP(
n_components=n_components, random_state=random_seed, metric="cosine"
)
data_umap = umap_model.fit_transform(embeddings_matrix)
# Calcular distancias y percentiles para determinar min_eps y max_eps
distances = pairwise_distances(data_umap, metric="cosine")
min_eps = np.percentile(distances, 10)
max_eps = np.percentile(distances, 50)
umap_data = pd.DataFrame(
{"embeddings": [embedding.tolist() for embedding in data_umap]}
)
umap_data["comment"] = data["comment"]
return umap_data, min_eps, max_eps
def determine_min_items_by_cluster(total):
""" """
if total < 50:
min_items_by_cluster = 1
elif total < 100:
min_items_by_cluster = 5
elif total < 500:
min_items_by_cluster = 10
else:
min_items_by_cluster = int(round(total * 0.01, 2))
return min_items_by_cluster
def main(): ...
if __name__ == "__main__":
main()
|