IFEval-Leaderboard / results /Codestral-22B-v0.1-GGUF.json
Krisseck's picture
Move codestral
526a513
{
"results": {
"ifeval": {
"prompt_level_strict_acc,none": 0.5304990757855823,
"prompt_level_strict_acc_stderr,none": 0.021476507681143012,
"inst_level_strict_acc,none": 0.6414868105515588,
"inst_level_strict_acc_stderr,none": "N/A",
"prompt_level_loose_acc,none": 0.5730129390018485,
"prompt_level_loose_acc_stderr,none": 0.021285933050061243,
"inst_level_loose_acc,none": 0.684652278177458,
"inst_level_loose_acc_stderr,none": "N/A",
"alias": "ifeval"
}
},
"group_subtasks": {
"ifeval": []
},
"configs": {
"ifeval": {
"task": "ifeval",
"dataset_path": "wis-k/instruction-following-eval",
"test_split": "train",
"doc_to_text": "prompt",
"doc_to_target": 0,
"process_results": "def process_results(doc, results):\n eval_logger.warning(\n \"This task is meant for chat-finetuned models, and may not give meaningful results for models other than `openai` or `anthropic` if `doc_to_text` in its YAML is not wrapped in the appropriate chat template string. This warning will be removed when chat templating support is added natively to local models\"\n )\n\n inp = InputExample(\n key=doc[\"key\"],\n instruction_id_list=doc[\"instruction_id_list\"],\n prompt=doc[\"prompt\"],\n kwargs=doc[\"kwargs\"],\n )\n response = results[0]\n\n out_strict = test_instruction_following_strict(inp, response)\n out_loose = test_instruction_following_loose(inp, response)\n\n return {\n \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "prompt_level_strict_acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "inst_level_strict_acc",
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
"higher_is_better": true
},
{
"metric": "prompt_level_loose_acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "inst_level_loose_acc",
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [],
"do_sample": false,
"temperature": 0.0,
"max_gen_toks": 1280
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 2.0
}
}
},
"versions": {
"ifeval": 2.0
},
"n-shot": {
"ifeval": 0
},
"higher_is_better": {
"ifeval": {
"prompt_level_strict_acc": true,
"inst_level_strict_acc": true,
"prompt_level_loose_acc": true,
"inst_level_loose_acc": true
}
},
"n-samples": {
"ifeval": {
"original": 541,
"effective": 541
}
},
"config": {
"model": "local-chat-completions",
"model_args": "base_url=http://localhost:7860/v1",
"batch_size": 1,
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "e39df01c",
"date": 1717667077.1671236,
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Arch Linux (x86_64)\nGCC version: (GCC) 14.1.1 20240522\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.39\n\nPython version: 3.12.3 (main, Apr 23 2024, 09:16:07) [GCC 13.2.1 20240417] (64-bit runtime)\nPython platform: Linux-6.9.2-arch1-1-x86_64-with-glibc2.39\nIs CUDA available: False\nCUDA runtime version: No CUDA\nCUDA_MODULE_LOADING set to: N/A\nGPU models and configuration: No CUDA\nNvidia driver version: No CUDA\ncuDNN version: No CUDA\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 43 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 16\nOn-line CPU(s) list: 0-15\nVendor ID: AuthenticAMD\nModel name: AMD Ryzen 7 3700X 8-Core Processor\nCPU family: 23\nModel: 113\nThread(s) per core: 2\nCore(s) per socket: 8\nSocket(s): 1\nStepping: 0\nFrequency boost: enabled\nCPU(s) scaling MHz: 76%\nCPU max MHz: 4426.1709\nCPU min MHz: 2200.0000\nBogoMIPS: 7189.76\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es\nVirtualization: AMD-V\nL1d cache: 256 KiB (8 instances)\nL1i cache: 256 KiB (8 instances)\nL2 cache: 4 MiB (8 instances)\nL3 cache: 32 MiB (2 instances)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-15\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Reg file data sampling: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection\nVulnerability Spec rstack overflow: Mitigation; Safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.1\n[conda] Could not collect",
"transformers_version": "4.41.2",
"upper_git_hash": null,
"task_hashes": {},
"model_source": "local-chat-completions",
"model_name": "",
"model_name_sanitized": "",
"system_instruction": null,
"system_instruction_sha": null,
"chat_template": null,
"chat_template_sha": null,
"start_time": 610332.529843511,
"end_time": 616406.709863398,
"total_evaluation_time_seconds": "6074.180019887048"
}