Krisseck's picture
Initial commit
8163dc5
raw
history blame
5.37 kB
import ast
import argparse
import glob
import pickle
import gradio as gr
import numpy as np
import pandas as pd
def model_hyperlink(model_name, link):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def load_leaderboard_table_csv(filename, add_hyperlink=True):
lines = open(filename).readlines()
heads = [v.strip() for v in lines[0].split(",")]
rows = []
for i in range(1, len(lines)):
row = [v.strip() for v in lines[i].split(",")]
for j in range(len(heads)):
item = {}
for h, v in zip(heads, row):
if "Score" in h:
item[h] = float(v)
elif h != "Model" and h != "Parameters (B)" and h != "Repo" and h != "Quantization" and h != "Link":
item[h] = int(v)
else:
item[h] = v
if add_hyperlink:
item["Repo"] = model_hyperlink(item["Repo"], item["Link"])
rows.append(item)
return rows
def get_arena_table(model_table_df):
# sort by rating
model_table_df = model_table_df.sort_values(by=["Final Score"], ascending=False)
values = []
for i in range(len(model_table_df)):
row = []
model_key = model_table_df.index[i]
model_name = model_table_df["Model"].values[model_key]
# rank
row.append(i + 1)
# model display name
row.append(model_name)
row.append(
model_table_df["Parameters (B)"].values[model_key]
)
row.append(
model_table_df["Repo"].values[model_key]
)
row.append(
model_table_df["Quantization"].values[model_key]
)
row.append(
model_table_df["Final Score"].values[model_key]
)
row.append(
model_table_df["Strict Prompt Score"].values[model_key]
)
row.append(
model_table_df["Strict Inst Score"].values[model_key]
)
row.append(
model_table_df["Loose Prompt Score"].values[model_key]
)
row.append(
model_table_df["Loose Inst Score"].values[model_key]
)
values.append(row)
return values
def build_leaderboard_tab(leaderboard_table_file, show_plot=False):
if leaderboard_table_file:
data = load_leaderboard_table_csv(leaderboard_table_file)
model_table_df = pd.DataFrame(data)
md_head = f"""
# πŸ† IFEval Leaderboard
"""
gr.Markdown(md_head, elem_id="leaderboard_markdown")
with gr.Tabs() as tabs:
# arena table
arena_table_vals = get_arena_table(model_table_df)
with gr.Tab("IFEval", id=0):
md = "Leaderboard for various Large Language Models measured with IFEval benchmark.\n\n[IFEval](https://github.com/google-research/google-research/tree/master/instruction_following_eval) is a straightforward and easy-to-reproduce evaluation benchmark. It focuses on a set of \"verifiable instructions\" such as \"write in more than 400 words\" and \"mention the keyword of AI at least 3 times\". We identified 25 types of those verifiable instructions and constructed around 500 prompts, with each prompt containing one or more verifiable instructions. \n\nTest ran with `lm-evaluation-harness`. Raw results can be found in the `results` directory. Made by [Kristian Polso](https://polso.info)."
gr.Markdown(md, elem_id="leaderboard_markdown")
gr.Dataframe(
headers=[
"Rank",
"Model",
"Parameters (B)",
"Repo",
"Quantization",
"Final Score",
"Strict Prompt Score",
"Strict Inst Score",
"Loose Prompt Score",
"Loose Inst Score"
],
datatype=[
"number",
"str",
"number",
"markdown",
"str",
"number",
"number",
"number",
"number",
"number"
],
value=arena_table_vals,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[50, 150, 100, 150, 100, 100, 100, 100, 100, 100],
wrap=True,
)
else:
pass
def build_demo(leaderboard_table_file):
text_size = gr.themes.sizes.text_lg
with gr.Blocks(
title="IFEval Leaderboard",
theme=gr.themes.Base(text_size=text_size),
) as demo:
leader_components = build_leaderboard_tab(
leaderboard_table_file, show_plot=True
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--IFEval_file", type=str, default="./IFEval.csv")
args = parser.parse_args()
demo = build_demo(args.IFEval_file)
demo.launch()