Spaces:
Runtime error
Runtime error
import ast | |
import argparse | |
import glob | |
import pickle | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
def model_hyperlink(model_name, link): | |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
def load_leaderboard_table_csv(filename, add_hyperlink=True): | |
lines = open(filename).readlines() | |
heads = [v.strip() for v in lines[0].split(",")] | |
rows = [] | |
for i in range(1, len(lines)): | |
row = [v.strip() for v in lines[i].split(",")] | |
for j in range(len(heads)): | |
item = {} | |
for h, v in zip(heads, row): | |
if "Score" in h: | |
item[h] = float(v) | |
elif h != "Model" and h != "Parameters (B)" and h != "Repo" and h != "Quantization" and h != "Link": | |
item[h] = int(v) | |
else: | |
item[h] = v | |
if add_hyperlink: | |
item["Repo"] = model_hyperlink(item["Repo"], item["Link"]) | |
rows.append(item) | |
return rows | |
def get_arena_table(model_table_df): | |
# sort by rating | |
model_table_df = model_table_df.sort_values(by=["Final Score"], ascending=False) | |
values = [] | |
for i in range(len(model_table_df)): | |
row = [] | |
model_key = model_table_df.index[i] | |
model_name = model_table_df["Model"].values[model_key] | |
# rank | |
row.append(i + 1) | |
# model display name | |
row.append(model_name) | |
row.append( | |
model_table_df["Parameters (B)"].values[model_key] | |
) | |
row.append( | |
model_table_df["Repo"].values[model_key] | |
) | |
row.append( | |
model_table_df["Quantization"].values[model_key] | |
) | |
row.append( | |
model_table_df["Final Score"].values[model_key] | |
) | |
row.append( | |
model_table_df["Strict Prompt Score"].values[model_key] | |
) | |
row.append( | |
model_table_df["Strict Inst Score"].values[model_key] | |
) | |
row.append( | |
model_table_df["Loose Prompt Score"].values[model_key] | |
) | |
row.append( | |
model_table_df["Loose Inst Score"].values[model_key] | |
) | |
values.append(row) | |
return values | |
def build_leaderboard_tab(leaderboard_table_file, show_plot=False): | |
if leaderboard_table_file: | |
data = load_leaderboard_table_csv(leaderboard_table_file) | |
model_table_df = pd.DataFrame(data) | |
md_head = f""" | |
# π IFEval Leaderboard | |
""" | |
gr.Markdown(md_head, elem_id="leaderboard_markdown") | |
with gr.Tabs() as tabs: | |
# arena table | |
arena_table_vals = get_arena_table(model_table_df) | |
with gr.Tab("IFEval", id=0): | |
md = "Leaderboard for various Large Language Models measured with IFEval benchmark.\n\n[IFEval](https://github.com/google-research/google-research/tree/master/instruction_following_eval) is a straightforward and easy-to-reproduce evaluation benchmark. It focuses on a set of \"verifiable instructions\" such as \"write in more than 400 words\" and \"mention the keyword of AI at least 3 times\". We identified 25 types of those verifiable instructions and constructed around 500 prompts, with each prompt containing one or more verifiable instructions. \n\nTest ran with `lm-evaluation-harness`. Raw results can be found in the `results` directory. Made by [Kristian Polso](https://polso.info)." | |
gr.Markdown(md, elem_id="leaderboard_markdown") | |
gr.Dataframe( | |
headers=[ | |
"Rank", | |
"Model", | |
"Parameters (B)", | |
"Repo", | |
"Quantization", | |
"Final Score", | |
"Strict Prompt Score", | |
"Strict Inst Score", | |
"Loose Prompt Score", | |
"Loose Inst Score" | |
], | |
datatype=[ | |
"number", | |
"str", | |
"number", | |
"markdown", | |
"str", | |
"number", | |
"number", | |
"number", | |
"number", | |
"number" | |
], | |
value=arena_table_vals, | |
elem_id="arena_leaderboard_dataframe", | |
height=700, | |
column_widths=[50, 150, 100, 150, 100, 100, 100, 100, 100, 100], | |
wrap=True, | |
) | |
else: | |
pass | |
def build_demo(leaderboard_table_file): | |
text_size = gr.themes.sizes.text_lg | |
with gr.Blocks( | |
title="IFEval Leaderboard", | |
theme=gr.themes.Base(text_size=text_size), | |
) as demo: | |
leader_components = build_leaderboard_tab( | |
leaderboard_table_file, show_plot=True | |
) | |
return demo | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true") | |
parser.add_argument("--IFEval_file", type=str, default="./IFEval.csv") | |
args = parser.parse_args() | |
demo = build_demo(args.IFEval_file) | |
demo.launch() | |