Spaces:
Running
Running
Commit
·
84ddfaa
1
Parent(s):
e4941eb
initial commit
Browse files- app.py +99 -0
- llm_model.py +92 -0
- requirements.txt +13 -0
- sidebar.py +60 -0
app.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit_lottie import st_lottie
|
| 3 |
+
import fitz # PyMuPDF
|
| 4 |
+
import requests
|
| 5 |
+
import os, shutil
|
| 6 |
+
import sidebar
|
| 7 |
+
import llm_model
|
| 8 |
+
|
| 9 |
+
@st.cache_data(experimental_allow_widgets=True)
|
| 10 |
+
def index_document(uploaded_file):
|
| 11 |
+
|
| 12 |
+
if uploaded_file is not None:
|
| 13 |
+
# Specify the folder path where you want to store the uploaded file in the 'assets' folder
|
| 14 |
+
assets_folder = "assets/uploaded_files"
|
| 15 |
+
if not os.path.exists(assets_folder):
|
| 16 |
+
os.makedirs(assets_folder)
|
| 17 |
+
|
| 18 |
+
# Save the uploaded file to the specified folder
|
| 19 |
+
file_path = os.path.join(assets_folder, uploaded_file.name)
|
| 20 |
+
with open(file_path, "wb") as f:
|
| 21 |
+
f.write(uploaded_file.getvalue())
|
| 22 |
+
|
| 23 |
+
file_name = os.path.join(assets_folder, uploaded_file.name)
|
| 24 |
+
st.success(f"File '{file_name}' uploaded !")
|
| 25 |
+
|
| 26 |
+
with st.spinner("Indexing document... This is a free CPU version and may take a while⏳"):
|
| 27 |
+
llm_model.create_vector_db(file_name, instructor_embeddings)
|
| 28 |
+
|
| 29 |
+
return file_name
|
| 30 |
+
else:
|
| 31 |
+
return None
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def load_lottieurl(url: str):
|
| 35 |
+
r = requests.get(url)
|
| 36 |
+
if r.status_code != 200:
|
| 37 |
+
return None
|
| 38 |
+
return r.json()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def is_query_valid(query: str) -> bool:
|
| 42 |
+
if not query:
|
| 43 |
+
st.error("Please enter a question!")
|
| 44 |
+
return False
|
| 45 |
+
return True
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Function to load model parameters
|
| 49 |
+
@st.cache_resource()
|
| 50 |
+
def load_model():
|
| 51 |
+
return llm_model.load_model_params()
|
| 52 |
+
|
| 53 |
+
st.set_page_config(page_title="Document QA Bot")
|
| 54 |
+
lottie_book = load_lottieurl("https://assets4.lottiefiles.com/temp/lf20_aKAfIn.json")
|
| 55 |
+
st_lottie(lottie_book, speed=1, height=200, key="initial")
|
| 56 |
+
# Place the title below the Lottie animation
|
| 57 |
+
st.title("PDF Q&A Bot 🤖")
|
| 58 |
+
|
| 59 |
+
# Left Sidebar
|
| 60 |
+
sidebar.sidebar()
|
| 61 |
+
# st.sidebar.header("Upload PDF")
|
| 62 |
+
|
| 63 |
+
# load model parameters
|
| 64 |
+
llm, instructor_embeddings = load_model()
|
| 65 |
+
# Upload file through Streamlit
|
| 66 |
+
uploaded_file = st.file_uploader("Upload a file", type=["pdf", "doc", "docx", "txt"])
|
| 67 |
+
|
| 68 |
+
filename = index_document(uploaded_file)
|
| 69 |
+
print(filename)
|
| 70 |
+
|
| 71 |
+
if not filename:
|
| 72 |
+
st.stop()
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
with st.form(key="qa_form"):
|
| 76 |
+
query = st.text_area("Ask a question about the document")
|
| 77 |
+
submit = st.form_submit_button("Submit")
|
| 78 |
+
|
| 79 |
+
if submit:
|
| 80 |
+
if not is_query_valid(query):
|
| 81 |
+
st.stop()
|
| 82 |
+
|
| 83 |
+
# Output Columns
|
| 84 |
+
answer_col, sources_col = st.columns(2)
|
| 85 |
+
|
| 86 |
+
qa_chain = llm_model.document_parser(instructor_embeddings, llm)
|
| 87 |
+
result = qa_chain(query)
|
| 88 |
+
|
| 89 |
+
with answer_col:
|
| 90 |
+
st.markdown("#### Answer")
|
| 91 |
+
st.markdown(result["result"])
|
| 92 |
+
|
| 93 |
+
with sources_col:
|
| 94 |
+
st.markdown("#### Sources")
|
| 95 |
+
if not ("i don't know" in result["result"].lower()):
|
| 96 |
+
for source in result["source_documents"]:
|
| 97 |
+
st.markdown(source.page_content)
|
| 98 |
+
st.markdown(source.metadata["source"])
|
| 99 |
+
st.markdown("--------------------------")
|
llm_model.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.vectorstores import FAISS
|
| 2 |
+
from langchain.llms import GooglePalm
|
| 3 |
+
from langchain.document_loaders import PyPDFLoader
|
| 4 |
+
from langchain.document_loaders import TextLoader
|
| 5 |
+
from langchain.document_loaders import Docx2txtLoader
|
| 6 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 7 |
+
from langchain.prompts import PromptTemplate
|
| 8 |
+
from langchain.chains import RetrievalQA
|
| 9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
+
import os
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
|
| 13 |
+
vector_index_path = "assets/vectordb/faiss_index"
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def load_env_variables():
|
| 17 |
+
load_dotenv() # take environment variables from .env
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def create_vector_db(filename, instructor_embeddings):
|
| 21 |
+
|
| 22 |
+
if filename.endswith(".pdf"):
|
| 23 |
+
loader = PyPDFLoader(file_path=filename)
|
| 24 |
+
elif filename.endswith(".doc") or filename.endswith(".docx"):
|
| 25 |
+
loader = Docx2txtLoader(filename)
|
| 26 |
+
elif filename.endswith("txt") or filename.endswith("TXT"):
|
| 27 |
+
loader = TextLoader(filename)
|
| 28 |
+
|
| 29 |
+
# Split documents
|
| 30 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=10)
|
| 31 |
+
splits = text_splitter.split_documents(loader.load())
|
| 32 |
+
|
| 33 |
+
# data = loader.load()
|
| 34 |
+
|
| 35 |
+
# Create a FAISS instance for vector database from 'data'
|
| 36 |
+
vectordb = FAISS.from_documents(documents=splits,
|
| 37 |
+
embedding=instructor_embeddings)
|
| 38 |
+
|
| 39 |
+
# Save vector database locally
|
| 40 |
+
vectordb.save_local(vector_index_path)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def get_qa_chain(instructor_embeddings, llm):
|
| 44 |
+
|
| 45 |
+
# Load the vector database from the local folder
|
| 46 |
+
vectordb = FAISS.load_local(vector_index_path, instructor_embeddings)
|
| 47 |
+
|
| 48 |
+
# Create a retriever for querying the vector database
|
| 49 |
+
retriever = vectordb.as_retriever(search_type="similarity")
|
| 50 |
+
|
| 51 |
+
prompt_template = """
|
| 52 |
+
You are a question answer agent and you must strictly follow below prompt template.
|
| 53 |
+
Given the following context and a question, generate an answer based on this context only.
|
| 54 |
+
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
|
| 55 |
+
Keep answers brief and well-structured. Do not give one word answers.
|
| 56 |
+
If the answer is not found in the context, kindly state "I don't know." Don't try to make up an answer.
|
| 57 |
+
|
| 58 |
+
CONTEXT: {context}
|
| 59 |
+
|
| 60 |
+
QUESTION: {question}"""
|
| 61 |
+
|
| 62 |
+
PROMPT = PromptTemplate(
|
| 63 |
+
template=prompt_template, input_variables=["context", "question"]
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
chain = RetrievalQA.from_chain_type(llm=llm,
|
| 67 |
+
chain_type="stuff", # or map-reduce
|
| 68 |
+
retriever=retriever,
|
| 69 |
+
input_key="query",
|
| 70 |
+
return_source_documents=True, # return source document from the vector db
|
| 71 |
+
chain_type_kwargs={"prompt": PROMPT},
|
| 72 |
+
verbose=True)
|
| 73 |
+
|
| 74 |
+
return chain
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def load_model_params():
|
| 78 |
+
|
| 79 |
+
load_env_variables()
|
| 80 |
+
# Create Google Palm LLM model
|
| 81 |
+
llm = GooglePalm(google_api_key=os.environ["GOOGLE_API_KEY"], temperature=0.1)
|
| 82 |
+
# # Initialize instructor embeddings using the Hugging Face model
|
| 83 |
+
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large")
|
| 84 |
+
|
| 85 |
+
return llm, instructor_embeddings
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def document_parser(instructor_embeddings, llm):
|
| 89 |
+
|
| 90 |
+
chain = get_qa_chain(instructor_embeddings=instructor_embeddings, llm=llm)
|
| 91 |
+
|
| 92 |
+
return chain
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain==0.0.284
|
| 2 |
+
python-dotenv==1.0.0
|
| 3 |
+
tiktoken==0.4.0
|
| 4 |
+
faiss-cpu==1.7.4
|
| 5 |
+
protobuf~=3.19.0
|
| 6 |
+
pypdf
|
| 7 |
+
google-generativeai
|
| 8 |
+
InstructorEmbedding
|
| 9 |
+
sentence-transformers
|
| 10 |
+
streamlit
|
| 11 |
+
frontend
|
| 12 |
+
tools
|
| 13 |
+
docx2txt
|
sidebar.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit_lottie import st_lottie
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def faq():
|
| 6 |
+
st.markdown(
|
| 7 |
+
"""
|
| 8 |
+
# FAQ
|
| 9 |
+
## How does Document Q&A Bot work?
|
| 10 |
+
When you upload a document (in Pdf, word, csv or txt format), it will be divided into smaller chunks
|
| 11 |
+
and stored in a special type of database called a vector index
|
| 12 |
+
that allows for semantic search and retrieval.
|
| 13 |
+
|
| 14 |
+
When you ask a question, our Q&A bot will first look through the document chunks and find the
|
| 15 |
+
most relevant ones using the vector index. Then, it will use open-source LLM model named Google Palm
|
| 16 |
+
and will provide the final answer.
|
| 17 |
+
|
| 18 |
+
## Is my data safe?
|
| 19 |
+
Yes, your data is safe. Our bot does not store your documents or
|
| 20 |
+
questions. All uploaded data is deleted after you close the browser tab.
|
| 21 |
+
|
| 22 |
+
## Why does it take so long to index my document?
|
| 23 |
+
Since, this is a sample QA bot project that uses open-source model
|
| 24 |
+
and doesn't have much resource capabilities like GPU, it may take time
|
| 25 |
+
to index your document based on the size of the document.
|
| 26 |
+
|
| 27 |
+
## Are the answers 100% accurate?
|
| 28 |
+
No, the answers are not 100% accurate.
|
| 29 |
+
But for most use cases, our QA bot is very accurate and can answer
|
| 30 |
+
most questions. Always check with the sources to make sure that the answers
|
| 31 |
+
are correct.
|
| 32 |
+
"""
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def sidebar():
|
| 37 |
+
with st.sidebar:
|
| 38 |
+
st.markdown("## Google Palm")
|
| 39 |
+
|
| 40 |
+
st.success('API key already provided!', icon='✅')
|
| 41 |
+
|
| 42 |
+
st.markdown(
|
| 43 |
+
"## How to use QA bot\n"
|
| 44 |
+
"1. Upload a pdf, docx, or a txt file📄\n"
|
| 45 |
+
"2. Ask questions about the document💬\n"
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# st.session_state["OPENAI_API_KEY"] = api_key_input
|
| 49 |
+
|
| 50 |
+
st.markdown("---")
|
| 51 |
+
st.markdown("# About")
|
| 52 |
+
st.markdown(
|
| 53 |
+
"🤖 QA bot allows you to ask questions about your "
|
| 54 |
+
"documents and get accurate answers with citations. "
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
st.markdown("Created by [Krishna Kumar](https://www.linkedin.com/in/krishna-kumar-yadav-726831105/)")
|
| 58 |
+
st.markdown("---")
|
| 59 |
+
|
| 60 |
+
faq()
|