|  | import torch | 
					
						
						|  | from diffusers import StableDiffusionPipeline | 
					
						
						|  | import gradio as gr | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_base = "Y2G/humans-v1" | 
					
						
						|  |  | 
					
						
						|  | lora_model_path = "Krebzonide/LoRA-CH-0" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True) | 
					
						
						|  | pipe.unet.load_attn_procs(lora_model_path) | 
					
						
						|  | pipe.to("cuda") | 
					
						
						|  |  | 
					
						
						|  | css = """ | 
					
						
						|  | .btn-green { | 
					
						
						|  | background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; | 
					
						
						|  | border-color: #22c55e !important; | 
					
						
						|  | color: #166534 !important; | 
					
						
						|  | } | 
					
						
						|  | .btn-green:hover { | 
					
						
						|  | background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def generate(prompt, neg_prompt, samp_steps, guide_scale, lora_scale, progress=gr.Progress(track_tqdm=True)): | 
					
						
						|  | images = pipe( | 
					
						
						|  | prompt, | 
					
						
						|  | negative_prompt=neg_prompt, | 
					
						
						|  | num_inference_steps=samp_steps, | 
					
						
						|  | guidance_scale=guide_scale, | 
					
						
						|  | cross_attention_kwargs={"scale": lora_scale}, | 
					
						
						|  | num_images_per_prompt=6 | 
					
						
						|  | ).images | 
					
						
						|  | return [(img, f"Image {i+1}") for i, img in enumerate(images)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Blocks(css=css) as demo: | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | prompt = gr.Textbox(label="Prompt") | 
					
						
						|  | negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality, disfigured, deformed, extra limbs, asian, filter, render") | 
					
						
						|  | submit_btn = gr.Button("Generate", elem_classes="btn-green") | 
					
						
						|  | gallery = gr.Gallery(label="Generated images", height=700) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | samp_steps = gr.Slider(1, 100, value=25, step=1, label="Sampling steps") | 
					
						
						|  | guide_scale = gr.Slider(1, 10, value=6, step=0.5, label="Guidance scale") | 
					
						
						|  | lora_scale = gr.Slider(0, 1, value=0.5, step=0.01, label="LoRA power") | 
					
						
						|  |  | 
					
						
						|  | submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, lora_scale], [gallery], queue=True) | 
					
						
						|  |  | 
					
						
						|  | demo.queue(1) | 
					
						
						|  | demo.launch(debug=True) |