import torch from diffusers import StableDiffusionPipeline import gradio as gr #model_base = "SG161222/Realistic_Vision_V5.1_noVAE" #realistic people model_base = "Justin-Choo/epiCRealism-Natural_Sin_RC1_VAE" #realistic people #model_base = "Lykon/DreamShaper" #unrealistic people #model_base = "runwayml/stable-diffusion-v1-5" #base #model_base = "Krebzonide/LazyMixPlus" #nsfw people #lora_model_path = "Krebzonide/LoRA-CH-0" #mecjh - Corey H, traind on epiCRealism lora_model_path = "Krebzonide/LoRA-CH-1" #mecjh - Corey H, traind on epiCRealism #lora_model_path = "Krebzonide/LoRA-EM1" #gfemti - Emily M, trained on sd-V1-5 #lora_model_path = "Krebzonide/LoRA-YX1" #uwspyx - Professor Xing, trained on Realistic_Vision pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True) pipe.unet.load_attn_procs(lora_model_path) pipe.to("cuda") css = """ .btn-green { background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; border-color: #22c55e !important; color: #166534 !important; } .btn-green:hover { background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; } """ def generate(prompt, neg_prompt, samp_steps, guide_scale, lora_scale, progress=gr.Progress(track_tqdm=True)): images = pipe( prompt, negative_prompt=neg_prompt, num_inference_steps=samp_steps, guidance_scale=guide_scale, cross_attention_kwargs={"scale": lora_scale}, num_images_per_prompt=4 ).images return [(img, f"Image {i+1}") for i, img in enumerate(images)] with gr.Blocks(css=css) as demo: with gr.Column(): prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality, disfigured, deformed, extra limbs, asian, filter, render") submit_btn = gr.Button("Generate", elem_classes="btn-green") gallery = gr.Gallery(label="Generated images", height=700) with gr.Row(): samp_steps = gr.Slider(1, 100, value=25, step=1, label="Sampling steps") guide_scale = gr.Slider(1, 10, value=6, step=0.5, label="Guidance scale") lora_scale = gr.Slider(0, 1, value=0.5, step=0.01, label="LoRA power") submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, lora_scale], [gallery], queue=True) demo.queue(1) demo.launch(debug=True)