from diffusers import AutoPipelineForText2Image import torch import random import os import gradio as gr hf_token = os.getenv("HF_TOKEN") model_id = int(os.getenv("Model")) nsfw_filter = int(os.getenv("Safe")) #stable-diffusion-xl-base-1.0 0 - base model #Colossus_Project_XL 1 - better people #AlbedoBaseXL_v11 2 - realistic #JuggernautXL_v7 3 - better faces #RealVisXL_V2.0 4 - better photorealism model_url_list = ["stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors", "Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors", "Krebzonide/AlbedoBaseXL_v11/blob/main/albedobaseXL_v11.safetensors", "Krebzonide/JuggernautXL_version5/blob/main/juggernautXL_v7Rundiffusion.safetensors", "SG161222/RealVisXL_V2.0/blob/main/RealVisXL_V2.0.safetensors", "Krebzonide/AcornIsSpinning_acornXLV1/blob/main/acornIsSpinning_acornxlV1.safetensors"] naughtyWords = ["nude", "nsfw", "naked", "porn", "boob", "tit", "nipple", "vagina", "pussy", "panties", "underwear", "upskirt", "bottomless", "topless", "petite", "xxx"] css = """ .btn-green { background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; border-color: #22c55e !important; color: #166534 !important; } .btn-green:hover { background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; } """ def generate(prompt, samp_steps, batch_size, seed, progress=gr.Progress(track_tqdm=True)): prompt = prompt.lower() if nsfw_filter: if prompt[:10] == "krebzonide": prompt = prompt[10:] else: neg_prompt = neg_prompt + ", child, nsfw, nipples, nude, underwear" for word in naughtyWords: if prompt.find(word) >= 0: return None, 58008 if seed < 0: seed = random.randint(1,999999) images = pipe( prompt, num_inference_steps=samp_steps, num_images_per_prompt=batch_size, guidance_scale=0.0, generator=torch.manual_seed(seed), ).images return gr.update(value = [(img, f"Image {i+1}") for i, img in enumerate(images)], height=height+90), seed def set_base_model(base_model_id): vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) global model_url_list model_url = "https://huggingface.co/" + model_url_list[base_model_id] pipe = AutoPipelineForText2Image.from_pretrained( "stabilityai/sdxl-turbo", torch_dtype = torch.float16, variant = "fp16" #use_auth_token=hf_token ) pipe.to("cuda") return pipe with gr.Blocks(css=css) as demo: with gr.Column(): prompt = gr.Textbox(label="Prompt") submit_btn = gr.Button("Generate", elem_classes="btn-green") with gr.Row(): samp_steps = gr.Slider(1, 30, value=10, step=1, label="Sampling steps") batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size", interactive=True) seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0) lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False) gallery = gr.Gallery(show_label=False, preview=True, container=False) with gr.Row(): submit_btn.click(generate, [prompt, samp_steps, batch_size, seed], [gallery, lastSeed], queue=True) pipe = set_base_model(model_id) demo.launch(debug=True)