from diffusers import AutoPipelineForText2Image, StableDiffusionImg2ImgPipeline import torchvision.transforms.functional as fn import torchvision.transforms.InterpolationMode as interp import gradio as gr import random import torch css = """ .btn-green { background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; border-color: #22c55e !important; color: #166534 !important; } .btn-green:hover { background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; } """ def generate(prompt, samp_steps, batch_size, seed, progress=gr.Progress(track_tqdm=True)): if seed < 0: seed = random.randint(1,999999) images = txt2img( prompt, num_inference_steps=1, num_images_per_prompt=batch_size, guidance_scale=0.0, generator=torch.manual_seed(seed), ).images upscaled_images = fn.resize(images, 1024, interp.NEAREST_EXACT) final_images = img2img( prompt, num_inference_steps=samp_steps, guidance_scale=5, generator=torch.manual_seed(seed), ).images return gr.update(value = [(img, f"Image {i+1}") for i, img in enumerate(final_images)]), seed def set_base_models(): txt2img = AutoPipelineForText2Image.from_pretrained( "stabilityai/sdxl-turbo", torch_dtype = torch.float16, variant = "fp16" ) txt2img.to("cuda") img2img = StableDiffusionImg2ImgPipeline.from_pretrained( "Lykon/dreamshaper-8", torch_dtype = torch.float16, variant = "fp16" ) img2img.to("cuda") return txt2img, img2img with gr.Blocks(css=css) as demo: with gr.Column(): prompt = gr.Textbox(label="Prompt") submit_btn = gr.Button("Generate", elem_classes="btn-green") with gr.Row(): sampling_steps = gr.Slider(1, 20, value=5, step=1, label="Sampling steps") batch_size = gr.Slider(1, 6, value=1, step=1, label="Batch size") seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0) lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False) gallery = gr.Gallery(show_label=False, preview=True, container=False, height=650) submit_btn.click(generate, [prompt, sampling_steps, batch_size, seed], [gallery, lastSeed], queue=True) txt2img, img2img = set_base_models() demo.launch(debug=True)