Spaces:
Running
on
T4
Running
on
T4
from diffusers import StableDiffusionXLPipeline, AutoencoderKL | |
import torch | |
#from controlnet_aux import OpenposeDetector | |
#from diffusers.utils import load_image | |
import gradio as gr | |
model_base = "stabilityai/stable-diffusion-xl-base-1.0" | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
#pipe = StableDiffusionXLPipeline.from_pretrained( | |
# model_base, vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True | |
#) | |
pipe = StableDiffusionXLPipeline.from_single_file( | |
"https://huggingface.co/Krebzonide/Colossus_Project_XL/blob/main/colossusProjectXLSFW_v202BakedVAE.safetensors", | |
torch_dtype = torch.float16, | |
variant = "fp16", | |
vae = vae, | |
use_safetensors = True, | |
scheduler_type = "ddim" | |
) | |
pipe = pipe.to("cuda") | |
css = """ | |
.btn-green { | |
background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; | |
border-color: #22c55e !important; | |
color: #166534 !important; | |
} | |
.btn-green:hover { | |
background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; | |
} | |
""" | |
def generate(prompt, neg_prompt, samp_steps, guide_scale, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
images = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
num_inference_steps=samp_steps, | |
guidance_scale=guide_scale, | |
#cross_attention_kwargs={"scale": lora_scale}, | |
num_images_per_prompt=1, | |
#generator=torch.manual_seed(97), | |
).images | |
return [(img, f"Image {i+1}") for i, img in enumerate(images)] | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality, disfigured, deformed, extra limbs, asian, filter, render") | |
submit_btn = gr.Button("Generate", elem_classes="btn-green") | |
gallery = gr.Gallery(label="Generated images", height=1100) | |
with gr.Row(): | |
samp_steps = gr.Slider(1, 100, value=25, step=1, label="Sampling steps") | |
guide_scale = gr.Slider(1, 10, value=6, step=0.5, label="Guidance scale") | |
lora_scale = gr.Slider(0, 1, value=0.5, step=0.01, label="LoRA power") | |
submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, lora_scale], [gallery], queue=True) | |
demo.queue(1) | |
demo.launch(debug=True) |