Spaces:
Running
on
T4
Running
on
T4
from diffusers import AutoPipelineForText2Image, StableDiffusionImg2ImgPipeline | |
from PIL import Image | |
import gradio as gr | |
import random | |
import torch | |
css = """ | |
.btn-green { | |
background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important; | |
border-color: #22c55e !important; | |
color: #166534 !important; | |
} | |
.btn-green:hover { | |
background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important; | |
} | |
""" | |
def generate(prompt, samp_steps, seed, progress=gr.Progress(track_tqdm=True)): | |
if seed < 0: | |
seed = random.randint(1,999999) | |
image = txt2img( | |
prompt, | |
num_inference_steps=1, | |
guidance_scale=0.0, | |
generator=torch.manual_seed(seed), | |
output_type="latent" | |
).images[0] | |
upscaled_image = image.resize((1024,1024), 1) | |
final_image = img2img( | |
prompt, | |
upscaled_image, | |
num_inference_steps=samp_steps, | |
guidance_scale=5, | |
strength=0.5, | |
generator=torch.manual_seed(seed), | |
).images[0] | |
return gr.update(value = (final_image, f"Image: {prompt}")), seed | |
def set_base_models(): | |
txt2img = AutoPipelineForText2Image.from_pretrained( | |
"stabilityai/sdxl-turbo", | |
torch_dtype = torch.float16, | |
variant = "fp16" | |
) | |
txt2img.to("cuda") | |
img2img = StableDiffusionImg2ImgPipeline.from_pretrained( | |
"Lykon/dreamshaper-8", | |
torch_dtype = torch.float16, | |
variant = "fp16" | |
) | |
img2img.to("cuda") | |
return txt2img, img2img | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt") | |
submit_btn = gr.Button("Generate", elem_classes="btn-green") | |
with gr.Row(): | |
sampling_steps = gr.Slider(1, 20, value=5, step=1, label="Sampling steps") | |
seed = gr.Number(label="Seed", value=-1, minimum=-1, precision=0) | |
lastSeed = gr.Number(label="Last Seed", value=-1, interactive=False) | |
gallery = gr.Gallery(show_label=False, preview=True, container=False, height=650) | |
submit_btn.click(generate, [prompt, sampling_steps, seed], [gallery, lastSeed], queue=True) | |
txt2img, img2img = set_base_models() | |
demo.launch(debug=True) |