Krebzonide's picture
Update app.py
70e3d12
raw
history blame
2.46 kB
import torch
from diffusers import StableDiffusionPipeline
import gradio as gr
#model_base = "SG161222/Realistic_Vision_V5.1_noVAE" #realistic people
model_base = "Justin-Choo/epiCRealism-Natural_Sin_RC1_VAE" #realistic people
#model_base = "Lykon/DreamShaper" #unrealistic people
#model_base = "runwayml/stable-diffusion-v1-5" #base
#model_base = "Krebzonide/LazyMixPlus" #nsfw people
#lora_model_path = "Krebzonide/LoRA-CH-0" #mecjh - Corey H, traind on epiCRealism
lora_model_path = "Krebzonide/LoRA-CH-1" #mecjh - Corey H, traind on epiCRealism
#lora_model_path = "Krebzonide/LoRA-EM1" #gfemti - Emily M, trained on sd-V1-5
#lora_model_path = "Krebzonide/LoRA-YX1" #uwspyx - Professor Xing, trained on Realistic_Vision
pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True)
pipe.unet.load_attn_procs(lora_model_path)
pipe.to("cuda")
css = """
.btn-green {
background-image: linear-gradient(to bottom right, #6dd178, #00a613) !important;
border-color: #22c55e !important;
color: #166534 !important;
}
.btn-green:hover {
background-image: linear-gradient(to bottom right, #6dd178, #6dd178) !important;
}
"""
def generate(prompt, neg_prompt, samp_steps, guide_scale, lora_scale, progress=gr.Progress(track_tqdm=True)):
images = pipe(
prompt,
negative_prompt=neg_prompt,
num_inference_steps=samp_steps,
guidance_scale=guide_scale,
cross_attention_kwargs={"scale": lora_scale},
num_images_per_prompt=4
).images
return [(img, f"Image {i+1}") for i, img in enumerate(images)]
with gr.Blocks(css=css) as demo:
with gr.Column():
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality, disfigured, deformed, extra limbs, asian, filter, render")
submit_btn = gr.Button("Generate", elem_classes="btn-green")
gallery = gr.Gallery(label="Generated images", height=700)
with gr.Row():
samp_steps = gr.Slider(1, 100, value=25, step=1, label="Sampling steps")
guide_scale = gr.Slider(1, 10, value=6, step=0.5, label="Guidance scale")
lora_scale = gr.Slider(0, 1, value=0.5, step=0.01, label="LoRA power")
submit_btn.click(generate, [prompt, negative_prompt, samp_steps, guide_scale, lora_scale], [gallery], queue=True)
demo.queue(1)
demo.launch(debug=True)