Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,74 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
from peft import PeftModel, PeftConfig
|
4 |
import gradio as gr
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
peft_config = PeftConfig.from_pretrained(adapter_id)
|
9 |
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
torch_dtype=torch.float16,
|
17 |
-
device_map="auto"
|
18 |
-
)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
top_p=0.9,
|
41 |
-
do_sample=True,
|
42 |
-
pad_token_id=tokenizer.eos_token_id
|
43 |
)
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import re
|
5 |
|
6 |
+
model_path = "./depression_model_part1"
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
8 |
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_path).to(device)
|
11 |
+
model.eval()
|
12 |
|
13 |
+
user_history = []
|
14 |
+
turn_counter = 0
|
15 |
+
MAX_TURNS_FOR_PREDICTION = 8
|
|
|
|
|
|
|
16 |
|
17 |
+
def chat(user_input):
|
18 |
+
global user_history, turn_counter
|
19 |
+
turn_counter += 1
|
20 |
+
|
21 |
+
user_history.append(f"Human: {user_input}")
|
22 |
+
|
23 |
+
last_turns = user_history[-4:]
|
24 |
+
prompt = "\n".join(last_turns) + "\nAI:"
|
25 |
+
|
26 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
27 |
+
output_ids = model.generate(
|
28 |
+
**inputs,
|
29 |
+
max_new_tokens=50,
|
30 |
+
do_sample=False,
|
31 |
+
pad_token_id=tokenizer.eos_token_id,
|
32 |
+
eos_token_id=tokenizer.eos_token_id,
|
33 |
+
)
|
34 |
+
response_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
35 |
+
response = response_text.split("AI:")[-1].strip()
|
36 |
|
37 |
+
user_history.append(f"AI: {response}")
|
38 |
+
|
39 |
+
depression_prob = None
|
40 |
+
if turn_counter == MAX_TURNS_FOR_PREDICTION:
|
41 |
+
prediction_prompt = (
|
42 |
+
"\n".join(user_history[-8:]) +
|
43 |
+
"\nAI: Based on this conversation, what is the probability that the human has depression? "
|
44 |
+
"Please answer with a number between 0 and 1."
|
45 |
+
)
|
46 |
+
inputs_pred = tokenizer(prediction_prompt, return_tensors="pt").to(device)
|
47 |
+
output_pred_ids = model.generate(
|
48 |
+
**inputs_pred,
|
49 |
+
max_new_tokens=10,
|
50 |
+
do_sample=False,
|
51 |
+
pad_token_id=tokenizer.eos_token_id,
|
52 |
+
eos_token_id=tokenizer.eos_token_id,
|
|
|
|
|
|
|
53 |
)
|
54 |
+
pred_text = tokenizer.decode(output_pred_ids[0], skip_special_tokens=True)
|
55 |
+
|
56 |
+
match = re.search(r"0?\.\d+", pred_text)
|
57 |
+
if match:
|
58 |
+
try:
|
59 |
+
depression_prob = float(match.group(0))
|
60 |
+
except:
|
61 |
+
depression_prob = None
|
62 |
+
|
63 |
+
return response, depression_prob if depression_prob is not None else "Prediction after 8 turns"
|
64 |
+
|
65 |
+
iface = gr.Interface(
|
66 |
+
fn=chat,
|
67 |
+
inputs=gr.Textbox(lines=2, label="Your Message"),
|
68 |
+
outputs=[gr.Textbox(label="AI Response"), gr.Textbox(label="Depression Probability")],
|
69 |
+
title="Depression Detection Chatbot",
|
70 |
+
description="Chat with the AI. After 8 turns it predicts depression probability."
|
71 |
+
)
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
iface.launch()
|