KomalNaseem commited on
Commit
22048e6
·
verified ·
1 Parent(s): 3012312

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -68
app.py CHANGED
@@ -1,75 +1,58 @@
1
- import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import torch
 
 
 
4
 
5
- model_id = "KomalNaseem/depression-chatbot-model" # replace with your model path
6
-
7
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
-
9
- tokenizer = AutoTokenizer.from_pretrained(model_id)
10
- model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
11
- model.eval()
12
-
13
- user_history = []
14
- turn_counter = 0
15
- MAX_TURNS_FOR_PREDICTION = 8
16
 
17
- def chat(user_input):
18
- global user_history, turn_counter
19
- turn_counter += 1
20
 
21
- user_history.append(f"Human: {user_input}")
22
- last_turns = user_history[-4:]
23
- prompt = "\n".join(last_turns) + "\nAI:"
 
 
 
24
 
25
- inputs = tokenizer(prompt, return_tensors="pt").to(device)
26
- output_ids = model.generate(
27
- **inputs,
28
- max_new_tokens=50,
29
- do_sample=False,
30
- pad_token_id=tokenizer.eos_token_id,
31
- eos_token_id=tokenizer.eos_token_id,
32
- )
33
- response_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
34
- response = response_text.split("AI:")[-1].strip()
35
- user_history.append(f"AI: {response}")
36
 
37
- depression_prob = None
38
- if turn_counter == MAX_TURNS_FOR_PREDICTION:
39
- prediction_prompt = (
40
- "\n".join(user_history[-8:]) +
41
- "\nAI: Based on this conversation, what is the probability that the human has depression? "
42
- "Please answer with a number between 0 and 1."
43
- )
44
- inputs_pred = tokenizer(prediction_prompt, return_tensors="pt").to(device)
45
- output_pred_ids = model.generate(
46
- **inputs_pred,
47
- max_new_tokens=10,
48
- do_sample=False,
49
- pad_token_id=tokenizer.eos_token_id,
50
- eos_token_id=tokenizer.eos_token_id,
 
 
 
 
 
51
  )
52
- pred_text = tokenizer.decode(output_pred_ids[0], skip_special_tokens=True)
53
-
54
- import re
55
- match = re.search(r"0?\.\d+", pred_text)
56
- if match:
57
- try:
58
- depression_prob = float(match.group(0))
59
- except:
60
- depression_prob = None
61
-
62
- return response, depression_prob
63
-
64
- chat_interface = gr.Interface(
65
- fn=chat,
66
- inputs=gr.Textbox(label="User Input"),
67
- outputs=[
68
- gr.Textbox(label="Bot Response"),
69
- gr.Textbox(label="Depression Probability (after 8 turns)")
70
- ],
71
- title="Depression Detection Chatbot",
72
- description="This chatbot detects depression by conversing for multiple turns. After 8 turns, it estimates the probability of depression."
73
- )
74
-
75
- chat_interface.launch()
 
 
 
1
  import torch
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ from peft import PeftModel, PeftConfig
4
+ import gradio as gr
5
 
6
+ # Load adapter config and base model
7
+ adapter_id = "KomalNaseem/depression-chatbot-model"
8
+ peft_config = PeftConfig.from_pretrained(adapter_id)
 
 
 
 
 
 
 
 
9
 
10
+ # Load tokenizer
11
+ tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
 
12
 
13
+ # Load base model
14
+ base_model = AutoModelForCausalLM.from_pretrained(
15
+ peft_config.base_model_name_or_path,
16
+ torch_dtype=torch.float16,
17
+ device_map="auto"
18
+ )
19
 
20
+ # Load the LoRA adapter
21
+ model = PeftModel.from_pretrained(base_model, adapter_id)
22
+ model.eval()
 
 
 
 
 
 
 
 
23
 
24
+ # Chat function
25
+ def chat_fn(user_input, history):
26
+ # Prepare input prompt by appending to history
27
+ history = history or []
28
+ prompt = ""
29
+ for turn in history:
30
+ prompt += f"User: {turn[0]}\nAI: {turn[1]}\n"
31
+ prompt += f"User: {user_input}\nAI:"
32
+
33
+ # Tokenize and generate response
34
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
35
+ with torch.no_grad():
36
+ outputs = model.generate(
37
+ **inputs,
38
+ max_new_tokens=200,
39
+ temperature=0.7,
40
+ top_p=0.9,
41
+ do_sample=True,
42
+ pad_token_id=tokenizer.eos_token_id
43
  )
44
+ decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
45
+
46
+ # Extract AI response (cutting off prompt)
47
+ ai_response = decoded.split("User:")[-1].split("AI:")[-1].strip()
48
+ history.append((user_input, ai_response))
49
+ return history, history
50
+
51
+ # Launch Gradio chat interface
52
+ gr.ChatInterface(
53
+ fn=chat_fn,
54
+ title="🧠 Depression Detection Chatbot",
55
+ description="This chatbot engages in a conversation and detects signs of depression using LLaMA 3.2 with a fine-tuned LoRA adapter.",
56
+ theme="soft",
57
+ examples=["I'm feeling really low today.", "I can't sleep at night and feel hopeless."],
58
+ ).launch()