Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import math | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
import torch | |
from torch.nn import functional as F | |
# https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/image_datasets.py | |
def center_crop_arr(pil_image, image_size): | |
# We are not on a new enough PIL to support the `reducing_gap` | |
# argument, which uses BOX downsampling at powers of two first. | |
# Thus, we do it by hand to improve downsample quality. | |
while min(*pil_image.size) >= 2 * image_size: | |
pil_image = pil_image.resize( | |
tuple(x // 2 for x in pil_image.size), resample=Image.BOX | |
) | |
scale = image_size / min(*pil_image.size) | |
pil_image = pil_image.resize( | |
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC | |
) | |
arr = np.array(pil_image) | |
crop_y = (arr.shape[0] - image_size) // 2 | |
crop_x = (arr.shape[1] - image_size) // 2 | |
return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size] | |
# https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/image_datasets.py | |
def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0): | |
min_smaller_dim_size = math.ceil(image_size / max_crop_frac) | |
max_smaller_dim_size = math.ceil(image_size / min_crop_frac) | |
smaller_dim_size = random.randrange(min_smaller_dim_size, max_smaller_dim_size + 1) | |
# We are not on a new enough PIL to support the `reducing_gap` | |
# argument, which uses BOX downsampling at powers of two first. | |
# Thus, we do it by hand to improve downsample quality. | |
while min(*pil_image.size) >= 2 * smaller_dim_size: | |
pil_image = pil_image.resize( | |
tuple(x // 2 for x in pil_image.size), resample=Image.BOX | |
) | |
scale = smaller_dim_size / min(*pil_image.size) | |
pil_image = pil_image.resize( | |
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC | |
) | |
arr = np.array(pil_image) | |
crop_y = random.randrange(arr.shape[0] - image_size + 1) | |
crop_x = random.randrange(arr.shape[1] - image_size + 1) | |
return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size] | |
# https://github.com/XPixelGroup/BasicSR/blob/master/basicsr/data/transforms.py | |
def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False): | |
"""Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees). | |
We use vertical flip and transpose for rotation implementation. | |
All the images in the list use the same augmentation. | |
Args: | |
imgs (list[ndarray] | ndarray): Images to be augmented. If the input | |
is an ndarray, it will be transformed to a list. | |
hflip (bool): Horizontal flip. Default: True. | |
rotation (bool): Ratotation. Default: True. | |
flows (list[ndarray]: Flows to be augmented. If the input is an | |
ndarray, it will be transformed to a list. | |
Dimension is (h, w, 2). Default: None. | |
return_status (bool): Return the status of flip and rotation. | |
Default: False. | |
Returns: | |
list[ndarray] | ndarray: Augmented images and flows. If returned | |
results only have one element, just return ndarray. | |
""" | |
hflip = hflip and random.random() < 0.5 | |
vflip = rotation and random.random() < 0.5 | |
rot90 = rotation and random.random() < 0.5 | |
def _augment(img): | |
if hflip: # horizontal | |
cv2.flip(img, 1, img) | |
if vflip: # vertical | |
cv2.flip(img, 0, img) | |
if rot90: | |
img = img.transpose(1, 0, 2) | |
return img | |
def _augment_flow(flow): | |
if hflip: # horizontal | |
cv2.flip(flow, 1, flow) | |
flow[:, :, 0] *= -1 | |
if vflip: # vertical | |
cv2.flip(flow, 0, flow) | |
flow[:, :, 1] *= -1 | |
if rot90: | |
flow = flow.transpose(1, 0, 2) | |
flow = flow[:, :, [1, 0]] | |
return flow | |
if not isinstance(imgs, list): | |
imgs = [imgs] | |
imgs = [_augment(img) for img in imgs] | |
if len(imgs) == 1: | |
imgs = imgs[0] | |
if flows is not None: | |
if not isinstance(flows, list): | |
flows = [flows] | |
flows = [_augment_flow(flow) for flow in flows] | |
if len(flows) == 1: | |
flows = flows[0] | |
return imgs, flows | |
else: | |
if return_status: | |
return imgs, (hflip, vflip, rot90) | |
else: | |
return imgs | |
# https://github.com/XPixelGroup/BasicSR/blob/master/basicsr/utils/img_process_util.py | |
def filter2D(img, kernel): | |
"""PyTorch version of cv2.filter2D | |
Args: | |
img (Tensor): (b, c, h, w) | |
kernel (Tensor): (b, k, k) | |
""" | |
k = kernel.size(-1) | |
b, c, h, w = img.size() | |
if k % 2 == 1: | |
img = F.pad(img, (k // 2, k // 2, k // 2, k // 2), mode='reflect') | |
else: | |
raise ValueError('Wrong kernel size') | |
ph, pw = img.size()[-2:] | |
if kernel.size(0) == 1: | |
# apply the same kernel to all batch images | |
img = img.view(b * c, 1, ph, pw) | |
kernel = kernel.view(1, 1, k, k) | |
return F.conv2d(img, kernel, padding=0).view(b, c, h, w) | |
else: | |
img = img.view(1, b * c, ph, pw) | |
kernel = kernel.view(b, 1, k, k).repeat(1, c, 1, 1).view(b * c, 1, k, k) | |
return F.conv2d(img, kernel, groups=b * c).view(b, c, h, w) | |
# https://github.com/XPixelGroup/BasicSR/blob/033cd6896d898fdd3dcda32e3102a792efa1b8f4/basicsr/utils/color_util.py#L186 | |
def rgb2ycbcr_pt(img, y_only=False): | |
"""Convert RGB images to YCbCr images (PyTorch version). | |
It implements the ITU-R BT.601 conversion for standard-definition television. See more details in | |
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. | |
Args: | |
img (Tensor): Images with shape (n, 3, h, w), the range [0, 1], float, RGB format. | |
y_only (bool): Whether to only return Y channel. Default: False. | |
Returns: | |
(Tensor): converted images with the shape (n, 3/1, h, w), the range [0, 1], float. | |
""" | |
if y_only: | |
weight = torch.tensor([[65.481], [128.553], [24.966]]).to(img) | |
out_img = torch.matmul(img.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + 16.0 | |
else: | |
weight = torch.tensor([[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]).to(img) | |
bias = torch.tensor([16, 128, 128]).view(1, 3, 1, 1).to(img) | |
out_img = torch.matmul(img.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + bias | |
out_img = out_img / 255. | |
return out_img | |
def to_pil_image(inputs, mem_order, val_range, channel_order): | |
# convert inputs to numpy array | |
if isinstance(inputs, torch.Tensor): | |
inputs = inputs.cpu().numpy() | |
assert isinstance(inputs, np.ndarray) | |
# make sure that inputs is a 4-dimension array | |
if mem_order in ["hwc", "chw"]: | |
inputs = inputs[None, ...] | |
mem_order = f"n{mem_order}" | |
# to NHWC | |
if mem_order == "nchw": | |
inputs = inputs.transpose(0, 2, 3, 1) | |
# to RGB | |
if channel_order == "bgr": | |
inputs = inputs[..., ::-1].copy() | |
else: | |
assert channel_order == "rgb" | |
if val_range == "0,1": | |
inputs = inputs * 255 | |
elif val_range == "-1,1": | |
inputs = (inputs + 1) * 127.5 | |
else: | |
assert val_range == "0,255" | |
inputs = inputs.clip(0, 255).astype(np.uint8) | |
return [inputs[i] for i in range(len(inputs))] | |
def put_text(pil_img_arr, text): | |
cv_img = pil_img_arr[..., ::-1].copy() | |
cv2.putText(cv_img, text, (10, 35), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) | |
return cv_img[..., ::-1].copy() | |
def auto_resize(img: Image.Image, size: int) -> Image.Image: | |
short_edge = min(img.size) | |
if short_edge < size: | |
r = size / short_edge | |
img = img.resize( | |
tuple(math.ceil(x * r) for x in img.size), Image.BICUBIC | |
) | |
else: | |
# make a deep copy of this image for safety | |
img = img.copy() | |
return img | |
def pad(img: np.ndarray, scale: int) -> np.ndarray: | |
h, w = img.shape[:2] | |
ph = 0 if h % scale == 0 else math.ceil(h / scale) * scale - h | |
pw = 0 if w % scale == 0 else math.ceil(w / scale) * scale - w | |
return np.pad( | |
img, pad_width=((0, ph), (0, pw), (0, 0)), mode="constant", | |
constant_values=0 | |
) | |