Spaces:
Running
Running
Commit
·
96e03ae
1
Parent(s):
91a1fc2
monorepo
Browse files- .data/TIMIT.zip +3 -0
- __pycache__/main.cpython-310.pyc +0 -0
- app.py +94 -53
- fake_queue/leaderboard.json +1 -1
- main.py +499 -0
- queue/leaderboard.json +72 -0
- queue/results.json +370 -0
- queue/tasks.json +92 -0
.data/TIMIT.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b79af42068b53045510d86854e2239a13ff77c4bd27803b40c28dce4bb5aeb0d
|
3 |
+
size 869007403
|
__pycache__/main.cpython-310.pyc
ADDED
Binary file (14.1 kB). View file
|
|
app.py
CHANGED
@@ -1,30 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
-
import requests
|
4 |
from pathlib import Path
|
5 |
-
from datetime import datetime
|
6 |
import logging
|
7 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
'https://koellabs-ipa-transcription-en-queue.hf.space/api'
|
14 |
-
).rstrip('/')
|
15 |
|
16 |
def load_leaderboard_data():
|
17 |
try:
|
18 |
-
|
19 |
-
|
20 |
-
response.raise_for_status()
|
21 |
-
return pd.DataFrame(response.json())
|
22 |
-
except requests.RequestException as e:
|
23 |
logging.error(f"Error loading leaderboard: {e}")
|
24 |
-
|
25 |
-
return pd.read_json(Path("fake_queue/leaderboard.json"))
|
26 |
-
except:
|
27 |
-
return pd.DataFrame()
|
28 |
|
29 |
def format_leaderboard_df(df):
|
30 |
if df.empty:
|
@@ -43,43 +45,85 @@ def format_leaderboard_df(df):
|
|
43 |
def create_html_table(df):
|
44 |
return df.to_html(escape=False, index=False, classes="styled-table")
|
45 |
|
46 |
-
def submit_evaluation(model_name, submission_name, github_url):
|
47 |
if not model_name or not submission_name:
|
48 |
return "⚠️ Please provide both model name and submission name."
|
49 |
|
50 |
-
request_data = {
|
51 |
-
"transcription_model": model_name,
|
52 |
-
"subset": "test",
|
53 |
-
"submission_name": submission_name,
|
54 |
-
"github_url": github_url if github_url else None
|
55 |
-
}
|
56 |
-
|
57 |
try:
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
return f"✅ Evaluation submitted successfully! Task ID: {task_id}"
|
67 |
-
except
|
68 |
return f"❌ Error: {str(e)}"
|
69 |
|
70 |
-
def
|
71 |
-
if not
|
72 |
-
return "Please enter a task ID"
|
|
|
73 |
try:
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
with gr.Blocks(css="""
|
85 |
.styled-table {
|
@@ -127,19 +171,16 @@ with gr.Blocks(css="""
|
|
127 |
outputs=result
|
128 |
)
|
129 |
|
130 |
-
with gr.TabItem("📊
|
131 |
-
|
132 |
status_btn = gr.Button("Check Status")
|
133 |
status_output = gr.JSON(label="Status")
|
134 |
|
135 |
-
# Use a simple function wrapper to ensure direct HTTP request
|
136 |
-
def check_status_wrapper(task_id):
|
137 |
-
return check_task_status(task_id)
|
138 |
-
|
139 |
status_btn.click(
|
140 |
-
fn=
|
141 |
-
inputs=
|
142 |
outputs=status_output
|
143 |
)
|
144 |
|
145 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
3 |
from pathlib import Path
|
|
|
4 |
import logging
|
5 |
+
from datetime import datetime
|
6 |
+
import sys
|
7 |
+
import uuid
|
8 |
+
from typing import Dict, Any
|
9 |
+
|
10 |
+
# Add parent directory to path to import main
|
11 |
+
sys.path.append(str(Path(__file__).parent))
|
12 |
+
from main import (
|
13 |
+
StorageManager,
|
14 |
+
EvaluationRequest,
|
15 |
+
evaluate_model,
|
16 |
+
PATHS
|
17 |
+
)
|
18 |
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
|
21 |
+
# Initialize storage manager
|
22 |
+
storage_manager = StorageManager(PATHS)
|
|
|
|
|
23 |
|
24 |
def load_leaderboard_data():
|
25 |
try:
|
26 |
+
return pd.DataFrame(storage_manager.load('leaderboard'))
|
27 |
+
except Exception as e:
|
|
|
|
|
|
|
28 |
logging.error(f"Error loading leaderboard: {e}")
|
29 |
+
return pd.DataFrame()
|
|
|
|
|
|
|
30 |
|
31 |
def format_leaderboard_df(df):
|
32 |
if df.empty:
|
|
|
45 |
def create_html_table(df):
|
46 |
return df.to_html(escape=False, index=False, classes="styled-table")
|
47 |
|
48 |
+
def submit_evaluation(model_name: str, submission_name: str, github_url: str) -> str:
|
49 |
if not model_name or not submission_name:
|
50 |
return "⚠️ Please provide both model name and submission name."
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
try:
|
53 |
+
# Generate a task ID
|
54 |
+
task_id = str(uuid.uuid4())
|
55 |
+
|
56 |
+
# Create evaluation request
|
57 |
+
request = EvaluationRequest(
|
58 |
+
transcription_model=model_name,
|
59 |
+
submission_name=submission_name,
|
60 |
+
github_url=github_url if github_url else None,
|
61 |
+
subset="test"
|
62 |
)
|
63 |
+
|
64 |
+
# Create task entry
|
65 |
+
task = {
|
66 |
+
"id": task_id,
|
67 |
+
"model": model_name,
|
68 |
+
"subset": "test",
|
69 |
+
"submission_name": submission_name,
|
70 |
+
"github_url": github_url,
|
71 |
+
"status": "queued",
|
72 |
+
"submitted_at": datetime.now().isoformat()
|
73 |
+
}
|
74 |
+
|
75 |
+
# Save task
|
76 |
+
tasks = storage_manager.load('tasks')
|
77 |
+
tasks.append(task)
|
78 |
+
storage_manager.save('tasks', tasks)
|
79 |
+
|
80 |
+
# Start evaluation in background
|
81 |
+
import asyncio
|
82 |
+
asyncio.run(evaluate_model(task_id, request))
|
83 |
+
|
84 |
return f"✅ Evaluation submitted successfully! Task ID: {task_id}"
|
85 |
+
except Exception as e:
|
86 |
return f"❌ Error: {str(e)}"
|
87 |
|
88 |
+
def check_status(query: str) -> Dict[str, Any]:
|
89 |
+
if not query:
|
90 |
+
return {"error": "Please enter a model name or task ID"}
|
91 |
+
|
92 |
try:
|
93 |
+
results = storage_manager.load('results')
|
94 |
+
tasks = storage_manager.load('tasks')
|
95 |
+
|
96 |
+
# First try to find by task ID
|
97 |
+
result = next((r for r in results if r["task_id"] == query), None)
|
98 |
+
task = next((t for t in tasks if t["id"] == query), None)
|
99 |
+
|
100 |
+
# If not found, try to find by model name
|
101 |
+
if not result:
|
102 |
+
result = next((r for r in results if r["model"] == query), None)
|
103 |
+
if not task:
|
104 |
+
task = next((t for t in tasks if t["model"] == query), None)
|
105 |
+
|
106 |
+
if result:
|
107 |
+
# If we found results, return them
|
108 |
+
return {
|
109 |
+
"status": "completed",
|
110 |
+
"model": result["model"],
|
111 |
+
"subset": result["subset"],
|
112 |
+
"num_files": result["num_files"],
|
113 |
+
"average_per": result["average_per"],
|
114 |
+
"average_pwed": result["average_pwed"],
|
115 |
+
"detailed_results": result["detailed_results"],
|
116 |
+
"timestamp": result["timestamp"]
|
117 |
+
}
|
118 |
+
elif task:
|
119 |
+
# If we only found task status, return that
|
120 |
+
return task
|
121 |
+
else:
|
122 |
+
return {"error": f"No results found for '{query}'"}
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
logging.error(f"Error checking status: {e}")
|
126 |
+
return {"error": f"Error checking status: {str(e)}"}
|
127 |
|
128 |
with gr.Blocks(css="""
|
129 |
.styled-table {
|
|
|
171 |
outputs=result
|
172 |
)
|
173 |
|
174 |
+
with gr.TabItem("📊 Model Status"):
|
175 |
+
query = gr.Textbox(label="Model Name or Task ID", placeholder="Enter model name (e.g., facebook/wav2vec2-lv-60-espeak-cv-ft)")
|
176 |
status_btn = gr.Button("Check Status")
|
177 |
status_output = gr.JSON(label="Status")
|
178 |
|
|
|
|
|
|
|
|
|
179 |
status_btn.click(
|
180 |
+
fn=check_status,
|
181 |
+
inputs=query,
|
182 |
outputs=status_output
|
183 |
)
|
184 |
|
185 |
+
if __name__ == "__main__":
|
186 |
+
demo.launch()
|
fake_queue/leaderboard.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
[
|
2 |
{
|
3 |
"submission_id": "8e6a3a00-59fa-4a24-861d-a132a8212658",
|
4 |
-
"submission_name": "facebook espeak",
|
5 |
"model": "facebook/wav2vec2-lv-60-espeak-cv-ft",
|
6 |
"average_per": 0.33667301260691423,
|
7 |
"average_pwed": 0.1276725657099669,
|
|
|
1 |
[
|
2 |
{
|
3 |
"submission_id": "8e6a3a00-59fa-4a24-861d-a132a8212658",
|
4 |
+
"submission_name": "fake-facebook espeak",
|
5 |
"model": "facebook/wav2vec2-lv-60-espeak-cv-ft",
|
6 |
"average_per": 0.33667301260691423,
|
7 |
"average_pwed": 0.1276725657099669,
|
main.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
3 |
+
from pydantic import BaseModel, HttpUrl
|
4 |
+
from typing import List, Optional, Dict
|
5 |
+
import torch
|
6 |
+
import torchaudio
|
7 |
+
from transformers import AutoProcessor, AutoModelForCTC
|
8 |
+
import evaluate
|
9 |
+
import zipfile
|
10 |
+
from datetime import datetime
|
11 |
+
import json
|
12 |
+
import uuid
|
13 |
+
import os
|
14 |
+
from pathlib import Path
|
15 |
+
|
16 |
+
app = FastAPI(title="TIMIT Phoneme Transcription Leaderboard")
|
17 |
+
|
18 |
+
# Create Gradio interface
|
19 |
+
demo = gr.Interface(
|
20 |
+
fn=lambda x: x,
|
21 |
+
inputs=gr.Textbox(visible=False),
|
22 |
+
outputs=gr.Textbox(visible=False),
|
23 |
+
title="TIMIT Phoneme Transcription Queue",
|
24 |
+
description="API endpoints are available at /api/leaderboard, /api/evaluate, and /api/tasks/{task_id}"
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
# Get absolute path - Updated for HF Spaces
|
29 |
+
CURRENT_DIR = Path(__file__).parent.absolute()
|
30 |
+
|
31 |
+
# Constants - Updated for HF Spaces environment
|
32 |
+
TIMIT_PATH = CURRENT_DIR / ".data" / "TIMIT.zip" # Move TIMIT.zip to root of space
|
33 |
+
QUEUE_DIR = CURRENT_DIR / "queue"
|
34 |
+
PATHS = {
|
35 |
+
'tasks': QUEUE_DIR / "tasks.json",
|
36 |
+
'results': QUEUE_DIR / "results.json",
|
37 |
+
'leaderboard': QUEUE_DIR / "leaderboard.json"
|
38 |
+
}
|
39 |
+
|
40 |
+
# Initialize evaluation metric
|
41 |
+
phone_errors = evaluate.load("ginic/phone_errors")
|
42 |
+
|
43 |
+
class TimitDataManager:
|
44 |
+
"""Handles all TIMIT dataset operations"""
|
45 |
+
|
46 |
+
# TIMIT to IPA mapping with direct simplifications
|
47 |
+
TIMIT_TO_IPA = {
|
48 |
+
# Vowels (simplified)
|
49 |
+
'aa': 'ɑ',
|
50 |
+
'ae': 'æ',
|
51 |
+
'ah': 'ʌ',
|
52 |
+
'ao': 'ɔ',
|
53 |
+
'aw': 'aʊ',
|
54 |
+
'ay': 'aɪ',
|
55 |
+
'eh': 'ɛ',
|
56 |
+
'er': 'ɹ', # Simplified from 'ɝ'
|
57 |
+
'ey': 'eɪ',
|
58 |
+
'ih': 'ɪ',
|
59 |
+
'ix': 'i', # Simplified from 'ɨ'
|
60 |
+
'iy': 'i',
|
61 |
+
'ow': 'oʊ',
|
62 |
+
'oy': 'ɔɪ',
|
63 |
+
'uh': 'ʊ',
|
64 |
+
'uw': 'u',
|
65 |
+
'ux': 'u', # Simplified from 'ʉ'
|
66 |
+
'ax': 'ə',
|
67 |
+
'ax-h': 'ə', # Simplified from 'ə̥'
|
68 |
+
'axr': 'ɹ', # Simplified from 'ɚ'
|
69 |
+
|
70 |
+
# Consonants
|
71 |
+
'b': '',
|
72 |
+
'bcl': 'b',
|
73 |
+
'd': '',
|
74 |
+
'dcl': 'd',
|
75 |
+
'g': '',
|
76 |
+
'gcl': 'g',
|
77 |
+
'p': '',
|
78 |
+
'pcl': 'p',
|
79 |
+
't': '',
|
80 |
+
'tcl': 't',
|
81 |
+
'k': '',
|
82 |
+
'kcl': 'k',
|
83 |
+
'dx': 'ɾ',
|
84 |
+
'q': 'ʔ',
|
85 |
+
|
86 |
+
# Fricatives
|
87 |
+
'jh': 'dʒ',
|
88 |
+
'ch': 'tʃ',
|
89 |
+
's': 's',
|
90 |
+
'sh': 'ʃ',
|
91 |
+
'z': 'z',
|
92 |
+
'zh': 'ʒ',
|
93 |
+
'f': 'f',
|
94 |
+
'th': 'θ',
|
95 |
+
'v': 'v',
|
96 |
+
'dh': 'ð',
|
97 |
+
'hh': 'h',
|
98 |
+
'hv': 'h', # Simplified from 'ɦ'
|
99 |
+
|
100 |
+
# Nasals (simplified)
|
101 |
+
'm': 'm',
|
102 |
+
'n': 'n',
|
103 |
+
'ng': 'ŋ',
|
104 |
+
'em': 'm', # Simplified from 'm̩'
|
105 |
+
'en': 'n', # Simplified from 'n̩'
|
106 |
+
'eng': 'ŋ', # Simplified from 'ŋ̍'
|
107 |
+
'nx': 'ɾ', # Simplified from 'ɾ̃'
|
108 |
+
|
109 |
+
# Semivowels and Glides
|
110 |
+
'l': 'l',
|
111 |
+
'r': 'ɹ',
|
112 |
+
'w': 'w',
|
113 |
+
'wh': 'ʍ',
|
114 |
+
'y': 'j',
|
115 |
+
'el': 'l', # Simplified from 'l̩'
|
116 |
+
|
117 |
+
# Special
|
118 |
+
'epi': '', # Remove epenthetic silence
|
119 |
+
'h#': '', # Remove start/end silence
|
120 |
+
'pau': '', # Remove pause
|
121 |
+
}
|
122 |
+
|
123 |
+
|
124 |
+
def __init__(self, timit_path: Path):
|
125 |
+
self.timit_path = timit_path
|
126 |
+
self._zip = None
|
127 |
+
print(f"TimitDataManager initialized with path: {self.timit_path.absolute()}")
|
128 |
+
if not self.timit_path.exists():
|
129 |
+
raise FileNotFoundError(f"TIMIT dataset not found at {self.timit_path.absolute()}")
|
130 |
+
print("TIMIT dataset file exists!")
|
131 |
+
|
132 |
+
@property
|
133 |
+
def zip(self):
|
134 |
+
if not self._zip:
|
135 |
+
try:
|
136 |
+
self._zip = zipfile.ZipFile(self.timit_path, 'r')
|
137 |
+
print("Successfully opened TIMIT zip file")
|
138 |
+
except FileNotFoundError:
|
139 |
+
raise FileNotFoundError(f"TIMIT dataset not found at {self.timit_path}")
|
140 |
+
return self._zip
|
141 |
+
|
142 |
+
def get_file_list(self, subset: str) -> List[str]:
|
143 |
+
"""Get list of WAV files for given subset"""
|
144 |
+
files = [f for f in self.zip.namelist()
|
145 |
+
if f.endswith('.WAV') and subset.lower() in f.lower()]
|
146 |
+
print(f"Found {len(files)} WAV files in {subset} subset")
|
147 |
+
if files:
|
148 |
+
print("First 3 files:", files[:3])
|
149 |
+
return files
|
150 |
+
|
151 |
+
def load_audio(self, filename: str) -> torch.Tensor:
|
152 |
+
"""Load and preprocess audio file"""
|
153 |
+
with self.zip.open(filename) as wav_file:
|
154 |
+
waveform, sample_rate = torchaudio.load(wav_file)
|
155 |
+
|
156 |
+
if waveform.shape[0] > 1:
|
157 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
158 |
+
|
159 |
+
if sample_rate != 16000:
|
160 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
161 |
+
|
162 |
+
waveform = (waveform - waveform.mean()) / (waveform.std() + 1e-7)
|
163 |
+
|
164 |
+
if waveform.dim() == 1:
|
165 |
+
waveform = waveform.unsqueeze(0)
|
166 |
+
|
167 |
+
return waveform
|
168 |
+
|
169 |
+
def get_phonemes(self, filename: str) -> str:
|
170 |
+
"""Get cleaned phoneme sequence from PHN file and convert to IPA"""
|
171 |
+
phn_file = filename.replace('.WAV', '.PHN')
|
172 |
+
with self.zip.open(phn_file) as f:
|
173 |
+
phonemes = []
|
174 |
+
for line in f.read().decode('utf-8').splitlines():
|
175 |
+
if line.strip():
|
176 |
+
_, _, phone = line.split()
|
177 |
+
phone = self.remove_stress_mark(phone)
|
178 |
+
# Convert to IPA instead of using simplify_timit
|
179 |
+
ipa = self.TIMIT_TO_IPA.get(phone.lower(), '')
|
180 |
+
if ipa:
|
181 |
+
phonemes.append(ipa)
|
182 |
+
return ''.join(phonemes) # Join without spaces for IPA
|
183 |
+
|
184 |
+
def simplify_timit(self, phoneme: str) -> str:
|
185 |
+
"""Apply substitutions to simplify TIMIT phonemes"""
|
186 |
+
return self.PHONE_SUBSTITUTIONS.get(phoneme, phoneme)
|
187 |
+
|
188 |
+
def remove_stress_mark(self, text: str) -> str:
|
189 |
+
"""Removes the combining double inverted breve (͡) from text"""
|
190 |
+
if not isinstance(text, str):
|
191 |
+
raise TypeError("Input must be string")
|
192 |
+
return text.replace('͡', '')
|
193 |
+
|
194 |
+
class ModelManager:
|
195 |
+
"""Handles model loading and inference"""
|
196 |
+
|
197 |
+
def __init__(self):
|
198 |
+
self.models = {}
|
199 |
+
self.processors = {}
|
200 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
201 |
+
self.batch_size = 32 # Added batch size parameter
|
202 |
+
|
203 |
+
def get_model_and_processor(self, model_name: str):
|
204 |
+
"""Get or load model and processor"""
|
205 |
+
if model_name not in self.models:
|
206 |
+
print("Loading processor with phoneme tokenizer...")
|
207 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
208 |
+
|
209 |
+
print("Loading model...", {model_name})
|
210 |
+
model = AutoModelForCTC.from_pretrained(model_name).to(self.device)
|
211 |
+
|
212 |
+
self.models[model_name] = model
|
213 |
+
self.processors[model_name] = processor
|
214 |
+
|
215 |
+
return self.models[model_name], self.processors[model_name]
|
216 |
+
|
217 |
+
def transcribe(self, audio_list: List[torch.Tensor], model_name: str) -> List[str]:
|
218 |
+
"""Transcribe a batch of audio using specified model"""
|
219 |
+
model, processor = self.get_model_and_processor(model_name)
|
220 |
+
if not model or not processor:
|
221 |
+
raise Exception("Model and processor not loaded")
|
222 |
+
|
223 |
+
# Process audio in batches
|
224 |
+
all_predictions = []
|
225 |
+
for i in range(0, len(audio_list), self.batch_size):
|
226 |
+
batch_audio = audio_list[i:i + self.batch_size]
|
227 |
+
|
228 |
+
# Pad sequence within batch
|
229 |
+
max_length = max(audio.shape[-1] for audio in batch_audio)
|
230 |
+
padded_audio = torch.zeros((len(batch_audio), 1, max_length))
|
231 |
+
attention_mask = torch.zeros((len(batch_audio), max_length))
|
232 |
+
|
233 |
+
for j, audio in enumerate(batch_audio):
|
234 |
+
padded_audio[j, :, :audio.shape[-1]] = audio
|
235 |
+
attention_mask[j, :audio.shape[-1]] = 1
|
236 |
+
|
237 |
+
# Process batch
|
238 |
+
inputs = processor(
|
239 |
+
padded_audio.squeeze(1).numpy(),
|
240 |
+
sampling_rate=16000,
|
241 |
+
return_tensors="pt",
|
242 |
+
padding=True
|
243 |
+
)
|
244 |
+
|
245 |
+
input_values = inputs.input_values.to(self.device)
|
246 |
+
attention_mask = inputs.get("attention_mask", attention_mask).to(self.device)
|
247 |
+
|
248 |
+
with torch.no_grad():
|
249 |
+
outputs = model(
|
250 |
+
input_values=input_values,
|
251 |
+
attention_mask=attention_mask
|
252 |
+
)
|
253 |
+
logits = outputs.logits
|
254 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
255 |
+
predictions = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
256 |
+
predictions = [pred.replace(' ', '') for pred in predictions]
|
257 |
+
all_predictions.extend(predictions)
|
258 |
+
|
259 |
+
return all_predictions
|
260 |
+
|
261 |
+
class StorageManager:
|
262 |
+
"""Handles all JSON storage operations"""
|
263 |
+
|
264 |
+
def __init__(self, paths: Dict[str, Path]):
|
265 |
+
self.paths = paths
|
266 |
+
self._ensure_directories()
|
267 |
+
|
268 |
+
def _ensure_directories(self):
|
269 |
+
"""Ensure all necessary directories and files exist"""
|
270 |
+
for path in self.paths.values():
|
271 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
272 |
+
if not path.exists():
|
273 |
+
path.write_text('[]')
|
274 |
+
|
275 |
+
def load(self, key: str) -> List:
|
276 |
+
"""Load JSON file"""
|
277 |
+
return json.loads(self.paths[key].read_text())
|
278 |
+
|
279 |
+
def save(self, key: str, data: List):
|
280 |
+
"""Save data to JSON file"""
|
281 |
+
self.paths[key].write_text(json.dumps(data, indent=4, default=str, ensure_ascii=False))
|
282 |
+
|
283 |
+
def update_task(self, task_id: str, updates: Dict):
|
284 |
+
"""Update specific task with new data"""
|
285 |
+
tasks = self.load('tasks')
|
286 |
+
for task in tasks:
|
287 |
+
if task['id'] == task_id:
|
288 |
+
task.update(updates)
|
289 |
+
break
|
290 |
+
self.save('tasks', tasks)
|
291 |
+
|
292 |
+
class EvaluationRequest(BaseModel):
|
293 |
+
"""Request model for TIMIT evaluation"""
|
294 |
+
transcription_model: str
|
295 |
+
subset: str = "test"
|
296 |
+
max_samples: Optional[int] = None
|
297 |
+
submission_name: str
|
298 |
+
github_url: Optional[str] = None
|
299 |
+
|
300 |
+
# Initialize managers
|
301 |
+
timit_manager = TimitDataManager(TIMIT_PATH)
|
302 |
+
model_manager = ModelManager()
|
303 |
+
storage_manager = StorageManager(PATHS)
|
304 |
+
|
305 |
+
async def evaluate_model(task_id: str, request: EvaluationRequest):
|
306 |
+
"""Background task to evaluate model on TIMIT"""
|
307 |
+
try:
|
308 |
+
storage_manager.update_task(task_id, {"status": "processing"})
|
309 |
+
|
310 |
+
files = timit_manager.get_file_list(request.subset)
|
311 |
+
if request.max_samples:
|
312 |
+
files = files[:request.max_samples]
|
313 |
+
|
314 |
+
results = []
|
315 |
+
total_per = total_pwed = 0
|
316 |
+
|
317 |
+
# Process files in batches
|
318 |
+
batch_size = model_manager.batch_size
|
319 |
+
for i in range(0, len(files), batch_size):
|
320 |
+
batch_files = files[i:i + batch_size]
|
321 |
+
|
322 |
+
# Load batch audio and ground truth
|
323 |
+
batch_audio = []
|
324 |
+
batch_ground_truth = []
|
325 |
+
for wav_file in batch_files:
|
326 |
+
audio = timit_manager.load_audio(wav_file)
|
327 |
+
ground_truth = timit_manager.get_phonemes(wav_file)
|
328 |
+
batch_audio.append(audio)
|
329 |
+
batch_ground_truth.append(ground_truth)
|
330 |
+
|
331 |
+
# Get predictions for batch
|
332 |
+
predictions = model_manager.transcribe(batch_audio, request.transcription_model)
|
333 |
+
|
334 |
+
# Calculate metrics for each file in batch
|
335 |
+
for j, (wav_file, prediction, ground_truth) in enumerate(zip(batch_files, predictions, batch_ground_truth)):
|
336 |
+
# Convert Unicode to readable format
|
337 |
+
#prediction_str = repr(prediction)[1:-1] # Remove quotes but keep escaped unicode
|
338 |
+
|
339 |
+
metrics = phone_errors.compute(
|
340 |
+
predictions=[prediction],
|
341 |
+
references=[ground_truth],
|
342 |
+
is_normalize_pfer=True
|
343 |
+
)
|
344 |
+
|
345 |
+
per = metrics['phone_error_rates'][0]
|
346 |
+
pwed = metrics['phone_feature_error_rates'][0]
|
347 |
+
|
348 |
+
results.append({
|
349 |
+
"file": wav_file,
|
350 |
+
"ground_truth": ground_truth,
|
351 |
+
"prediction": prediction,
|
352 |
+
"per": per,
|
353 |
+
"pwed": pwed
|
354 |
+
})
|
355 |
+
|
356 |
+
total_per += per
|
357 |
+
total_pwed += pwed
|
358 |
+
|
359 |
+
if not results:
|
360 |
+
raise Exception("No files were successfully processed")
|
361 |
+
|
362 |
+
avg_per = total_per / len(results)
|
363 |
+
avg_pwed = total_pwed / len(results)
|
364 |
+
|
365 |
+
result = {
|
366 |
+
"task_id": task_id,
|
367 |
+
"model": request.transcription_model,
|
368 |
+
"subset": request.subset,
|
369 |
+
"num_files": len(results),
|
370 |
+
"average_per": avg_per,
|
371 |
+
"average_pwed": avg_pwed,
|
372 |
+
"detailed_results": results[:5],
|
373 |
+
"timestamp": datetime.now().isoformat()
|
374 |
+
}
|
375 |
+
|
376 |
+
# Save results
|
377 |
+
print("Saving results...")
|
378 |
+
current_results = storage_manager.load('results')
|
379 |
+
current_results.append(result)
|
380 |
+
storage_manager.save('results', current_results)
|
381 |
+
|
382 |
+
# Update leaderboard
|
383 |
+
print("Updating leaderboard...")
|
384 |
+
leaderboard = storage_manager.load('leaderboard')
|
385 |
+
entry = next((e for e in leaderboard
|
386 |
+
if e["submission_name"] == request.submission_name), None)
|
387 |
+
|
388 |
+
if entry:
|
389 |
+
# Simply update with new scores
|
390 |
+
entry.update({
|
391 |
+
"average_per": avg_per,
|
392 |
+
"average_pwed": avg_pwed,
|
393 |
+
"model": request.transcription_model,
|
394 |
+
"subset": request.subset,
|
395 |
+
"github_url": request.github_url,
|
396 |
+
"submission_date": datetime.now().isoformat()
|
397 |
+
})
|
398 |
+
else:
|
399 |
+
leaderboard.append({
|
400 |
+
"submission_id": str(uuid.uuid4()),
|
401 |
+
"submission_name": request.submission_name,
|
402 |
+
"model": request.transcription_model,
|
403 |
+
"average_per": avg_per,
|
404 |
+
"average_pwed": avg_pwed,
|
405 |
+
"subset": request.subset,
|
406 |
+
"github_url": request.github_url,
|
407 |
+
"submission_date": datetime.now().isoformat()
|
408 |
+
})
|
409 |
+
|
410 |
+
storage_manager.save('leaderboard', leaderboard)
|
411 |
+
storage_manager.update_task(task_id, {"status": "completed"})
|
412 |
+
print("Evaluation completed successfully")
|
413 |
+
|
414 |
+
except Exception as e:
|
415 |
+
error_msg = f"Evaluation failed: {str(e)}"
|
416 |
+
print(error_msg)
|
417 |
+
storage_manager.update_task(task_id, {
|
418 |
+
"status": "failed",
|
419 |
+
"error": error_msg
|
420 |
+
})
|
421 |
+
|
422 |
+
# Initialize managers
|
423 |
+
def init_directories():
|
424 |
+
"""Ensure all necessary directories exist"""
|
425 |
+
(CURRENT_DIR / ".data").mkdir(parents=True, exist_ok=True)
|
426 |
+
QUEUE_DIR.mkdir(parents=True, exist_ok=True)
|
427 |
+
|
428 |
+
for path in PATHS.values():
|
429 |
+
if not path.exists():
|
430 |
+
path.write_text('[]')
|
431 |
+
|
432 |
+
# Initialize your managers
|
433 |
+
init_directories() # Your existing initialization function
|
434 |
+
timit_manager = TimitDataManager(TIMIT_PATH)
|
435 |
+
model_manager = ModelManager()
|
436 |
+
storage_manager = StorageManager(PATHS)
|
437 |
+
|
438 |
+
@app.get("/api/health")
|
439 |
+
async def health_check():
|
440 |
+
"""Simple health check endpoint"""
|
441 |
+
return {"status": "healthy"}
|
442 |
+
|
443 |
+
@app.post("/api/evaluate")
|
444 |
+
async def submit_evaluation(
|
445 |
+
request: EvaluationRequest,
|
446 |
+
background_tasks: BackgroundTasks
|
447 |
+
):
|
448 |
+
"""Submit new evaluation task"""
|
449 |
+
task_id = str(uuid.uuid4())
|
450 |
+
|
451 |
+
task = {
|
452 |
+
"id": task_id,
|
453 |
+
"model": request.transcription_model,
|
454 |
+
"subset": request.subset,
|
455 |
+
"submission_name": request.submission_name,
|
456 |
+
"github_url": request.github_url,
|
457 |
+
"status": "queued",
|
458 |
+
"submitted_at": datetime.now().isoformat()
|
459 |
+
}
|
460 |
+
|
461 |
+
tasks = storage_manager.load('tasks')
|
462 |
+
tasks.append(task)
|
463 |
+
storage_manager.save('tasks', tasks)
|
464 |
+
|
465 |
+
background_tasks.add_task(evaluate_model, task_id, request)
|
466 |
+
|
467 |
+
return {
|
468 |
+
"message": "Evaluation task submitted successfully",
|
469 |
+
"task_id": task_id
|
470 |
+
}
|
471 |
+
|
472 |
+
@app.get("/api/tasks/{task_id}")
|
473 |
+
async def get_task(task_id: str):
|
474 |
+
"""Get specific task status"""
|
475 |
+
tasks = storage_manager.load('tasks')
|
476 |
+
task = next((t for t in tasks if t["id"] == task_id), None)
|
477 |
+
if not task:
|
478 |
+
raise HTTPException(status_code=404, detail="Task not found")
|
479 |
+
return task
|
480 |
+
|
481 |
+
@app.get("/api/leaderboard")
|
482 |
+
async def get_leaderboard():
|
483 |
+
"""Get current leaderboard"""
|
484 |
+
try:
|
485 |
+
leaderboard = storage_manager.load('leaderboard')
|
486 |
+
sorted_leaderboard = sorted(leaderboard, key=lambda x: (x["average_per"], x["average_pwed"]))
|
487 |
+
return sorted_leaderboard
|
488 |
+
except Exception as e:
|
489 |
+
print(f"Error loading leaderboard: {e}")
|
490 |
+
return []
|
491 |
+
|
492 |
+
# Note: We need to mount the FastAPI app after defining all routes
|
493 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
494 |
+
|
495 |
+
# For local development
|
496 |
+
if __name__ == "__main__":
|
497 |
+
import uvicorn
|
498 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
499 |
+
|
queue/leaderboard.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"submission_id": "8e6a3a00-59fa-4a24-861d-a132a8212658",
|
4 |
+
"submission_name": "facebook espeak",
|
5 |
+
"model": "facebook/wav2vec2-lv-60-espeak-cv-ft",
|
6 |
+
"average_per": 0.33667301260691423,
|
7 |
+
"average_pwed": 0.1276725657099669,
|
8 |
+
"subset": "test",
|
9 |
+
"github_url": "https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md",
|
10 |
+
"submission_date": "2024-12-05T07:32:06.850230"
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"submission_id": "70aceb68-ad86-4a83-9998-08adb27b4d5c",
|
14 |
+
"submission_name": "english phoneme model",
|
15 |
+
"model": "KoelLabs/xlsr-timit-b0",
|
16 |
+
"average_per": 0.12572285528714347,
|
17 |
+
"average_pwed": 0.06476636812791145,
|
18 |
+
"subset": "test",
|
19 |
+
"github_url": "https://github.com/KoelLabs/",
|
20 |
+
"submission_date": "2024-12-05T08:25:24.982477"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"submission_id": "80b57299-b3ab-4caf-ac4a-898c8398046e",
|
24 |
+
"submission_name": "speech 31 model",
|
25 |
+
"model": "speech31/wav2vec2-large-TIMIT-IPA",
|
26 |
+
"average_per": 0.4415425496841929,
|
27 |
+
"average_pwed": 0.18625930002594002,
|
28 |
+
"subset": "test",
|
29 |
+
"github_url": "https://huggingface.co/speech31/wav2vec2-large-TIMIT-IPA2",
|
30 |
+
"submission_date": "2024-12-05T09:36:14.570315"
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"submission_id": "0cbcab0a-bd07-421f-82a0-480c9507a214",
|
34 |
+
"submission_name": "jubiliano model wav2vec2",
|
35 |
+
"model": "Jubliano/wav2vec2-large-xls-r-300m-ipa-INTERNATIONAL1.5",
|
36 |
+
"average_per": 0.6318471187460027,
|
37 |
+
"average_pwed": 0.222932144739126,
|
38 |
+
"subset": "test",
|
39 |
+
"github_url": "https://huggingface.co/Jubliano/wav2vec2-large-xls-r-300m-ipa-INTERNATIONAL1.5WithoutSpaces/tree/d5312009d8e620b183c334dfdd9ffc6b4f06f8c1",
|
40 |
+
"submission_date": "2024-12-05T10:17:21.334530"
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"submission_id": "0fc29c54-3db2-46b6-aeee-c96484306751",
|
44 |
+
"submission_name": "xlsr 53 model",
|
45 |
+
"model": "facebook/wav2vec2-xlsr-53-espeak-cv-ft",
|
46 |
+
"average_per": 0.348845592557092,
|
47 |
+
"average_pwed": 0.1386742019529415,
|
48 |
+
"subset": "test",
|
49 |
+
"github_url": "https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md",
|
50 |
+
"submission_date": "2024-12-05T10:34:26.157054"
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"submission_id": "a23026ec-acac-4481-9761-f9368b4b94f1",
|
54 |
+
"submission_name": "ginic model wav2vec2 finetuned on buckeye",
|
55 |
+
"model": "ginic/hyperparam_tuning_1_wav2vec2-large-xlsr-buckeye-ipa",
|
56 |
+
"average_per": 0.2766466385175833,
|
57 |
+
"average_pwed": 0.10410683992600853,
|
58 |
+
"subset": "test",
|
59 |
+
"github_url": "https://huggingface.co/ginic/vary_individuals_old_only_1_wav2vec2-large-xlsr-buckeye-ipa",
|
60 |
+
"submission_date": "2024-12-05T11:06:07.984825"
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"submission_id": "e3bbf521-cc32-43a6-bf1c-5ddc6bce04ab",
|
64 |
+
"submission_name": "koel labs initial ",
|
65 |
+
"model": "KoelLabs/xlsr-timit-a0",
|
66 |
+
"average_per": 0.24242141955346685,
|
67 |
+
"average_pwed": 0.17395311976938,
|
68 |
+
"subset": "test",
|
69 |
+
"github_url": "https://github.com/KoelLabs/ML/",
|
70 |
+
"submission_date": "2024-12-12T16:07:25.391145"
|
71 |
+
}
|
72 |
+
]
|
queue/results.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"task_id": "721b4c64-a825-42d3-bb0a-bdff9ee1ed0f",
|
4 |
+
"model": "facebook/wav2vec2-lv-60-espeak-cv-ft",
|
5 |
+
"subset": "test",
|
6 |
+
"num_files": 1680,
|
7 |
+
"average_per": 0.33667301260691423,
|
8 |
+
"average_pwed": 0.1276725657099669,
|
9 |
+
"detailed_results": [
|
10 |
+
{
|
11 |
+
"file": "data/TEST/DR1/FAKS0/SA1.WAV",
|
12 |
+
"ground_truth": "ʃihædjɹdɑɹksuɾɪŋgɹisiwɑʃwɑɾɹʔɔljiɹ",
|
13 |
+
"prediction": "ʃiːhædjɚdɑːɹksuːɾɪnɡɹiːsiwɑːʃwɑːɾɚɹɑːljiː",
|
14 |
+
"per": 0.3939393939393939,
|
15 |
+
"pwed": 0.13888888888888887
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"file": "data/TEST/DR1/FAKS0/SA2.WAV",
|
19 |
+
"ground_truth": "oʊnæsmitikɛɹiinɔɪliɹæglaɪkðæt",
|
20 |
+
"prediction": "doʊntæskmiːtəkæɹiɐnoɪliɹæɡlaɪkðæt",
|
21 |
+
"per": 0.32142857142857145,
|
22 |
+
"pwed": 0.13541666666666666
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"file": "data/TEST/DR1/FAKS0/SI1573.WAV",
|
26 |
+
"ground_truth": "hɪzkæpinwəsθɪnænhægɹdinɪzbjuɾuflbutswɹwɔɹninʃæbi",
|
27 |
+
"prediction": "hɪzkæptənwʌzθɪnændhæɡɚdændhɪzbjuːɾɪfəlbuːtswɜːwɔːɹnændʃæbi",
|
28 |
+
"per": 0.3617021276595745,
|
29 |
+
"pwed": 0.13915094339622644
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"file": "data/TEST/DR1/FAKS0/SI2203.WAV",
|
33 |
+
"ground_truth": "ðiɹizənzfɹðɪsdaɪvsimdfuliʃnaʊ",
|
34 |
+
"prediction": "ðəɹiːzənzfɜːðɪsdaɪvsiːmdfuːlɪʃnaʊ",
|
35 |
+
"per": 0.20689655172413793,
|
36 |
+
"pwed": 0.022988505747126433
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"file": "data/TEST/DR1/FAKS0/SI943.WAV",
|
40 |
+
"ground_truth": "ɹdʌkʃinmeɪfɔlfɑɹbəloʊəkspikeɪʃnts",
|
41 |
+
"prediction": "pɹədʌkʃənmeɪfɔːlfɑːɹbᵻloʊɛkspɛkteɪʃənz",
|
42 |
+
"per": 0.36363636363636365,
|
43 |
+
"pwed": 0.1392857142857143
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"timestamp": "2024-12-05T07:32:06.849017"
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_id": "d6fe0956-b5b4-4105-835e-8dee1872ee4d",
|
50 |
+
"model": "KoelLabs/xlsr-timit-b0",
|
51 |
+
"subset": "test",
|
52 |
+
"num_files": 1680,
|
53 |
+
"average_per": 0.12572285528714347,
|
54 |
+
"average_pwed": 0.06476636812791145,
|
55 |
+
"detailed_results": [
|
56 |
+
{
|
57 |
+
"file": "data/TEST/DR1/FAKS0/SA1.WAV",
|
58 |
+
"ground_truth": "ʃihædjɹdɑɹksuɾɪŋgɹisiwɑʃwɑɾɹʔɔljiɹ",
|
59 |
+
"prediction": "ʃihædjɹdɑɹksuɾɪnɡɹisiwɑʃwɔɾɹʔɔljɪɹ",
|
60 |
+
"per": 0.12121212121212122,
|
61 |
+
"pwed": 0.037990196078431376
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"file": "data/TEST/DR1/FAKS0/SA2.WAV",
|
65 |
+
"ground_truth": "oʊnæsmitikɛɹiinɔɪliɹæglaɪkðæt",
|
66 |
+
"prediction": "oʊnæskmitikæɹinɔɪliɹæɡlaɪkðæt",
|
67 |
+
"per": 0.14285714285714285,
|
68 |
+
"pwed": 0.10632183908045977
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"file": "data/TEST/DR1/FAKS0/SI1573.WAV",
|
72 |
+
"ground_truth": "hɪzkæpinwəsθɪnænhægɹdinɪzbjuɾuflbutswɹwɔɹninʃæbi",
|
73 |
+
"prediction": "hɪzkæpinwəsθɪnhæɡɹdinizbjuɾiflbutswɹwɔɹninʃæbi",
|
74 |
+
"per": 0.10638297872340426,
|
75 |
+
"pwed": 0.0425531914893617
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"file": "data/TEST/DR1/FAKS0/SI2203.WAV",
|
79 |
+
"ground_truth": "ðiɹizənzfɹðɪsdaɪvsimdfuliʃnaʊ",
|
80 |
+
"prediction": "ðəɹiznzfɹðistaɪvsimdfuliʃnaʊ",
|
81 |
+
"per": 0.13793103448275862,
|
82 |
+
"pwed": 0.04166666666666667
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"file": "data/TEST/DR1/FAKS0/SI943.WAV",
|
86 |
+
"ground_truth": "ɹdʌkʃinmeɪfɔlfɑɹbəloʊəkspikeɪʃnts",
|
87 |
+
"prediction": "pɹdʌkʃnmeɪfɔlfɑɹbloʊɛkspɛkeɪʃəns",
|
88 |
+
"per": 0.21212121212121213,
|
89 |
+
"pwed": 0.10858585858585859
|
90 |
+
}
|
91 |
+
],
|
92 |
+
"timestamp": "2024-12-05T08:25:24.980111"
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"task_id": "dbf4642a-fb13-402c-8a74-cc41fc4be599",
|
96 |
+
"model": "speech31/wav2vec2-large-TIMIT-IPA",
|
97 |
+
"subset": "test",
|
98 |
+
"num_files": 1680,
|
99 |
+
"average_per": 0.4415425496841929,
|
100 |
+
"average_pwed": 0.18625930002594002,
|
101 |
+
"detailed_results": [
|
102 |
+
{
|
103 |
+
"file": "data/TEST/DR1/FAKS0/SA1.WAV",
|
104 |
+
"ground_truth": "ʃihædjɹdɑɹksuɾɪŋgɹisiwɑʃwɑɾɹʔɔljiɹ",
|
105 |
+
"prediction": "ʃihædjʊrdɑrksutɪngrisiwɑʃwɔtərɔljɪrrrɪrɪrʃ",
|
106 |
+
"per": 0.5757575757575758,
|
107 |
+
"pwed": 0.25
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"file": "data/TEST/DR1/FAKS0/SA2.WAV",
|
111 |
+
"ground_truth": "oʊnæsmitikɛɹiinɔɪliɹæglaɪkðæt",
|
112 |
+
"prediction": "doʊntæskmitɪkɛriənɔɪliræglaɪkðəttm",
|
113 |
+
"per": 0.35714285714285715,
|
114 |
+
"pwed": 0.172979797979798
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"file": "data/TEST/DR1/FAKS0/SI1573.WAV",
|
118 |
+
"ground_truth": "hɪzkæpinwəsθɪnænhægɹdinɪzbjuɾuflbutswɹwɔɹninʃæbi",
|
119 |
+
"prediction": "hɪzkæptɪnwɑzθɪnəndhægərdəndhɪzbjutəfəlbutswərwɔrnəndʃæbi",
|
120 |
+
"per": 0.40425531914893614,
|
121 |
+
"pwed": 0.17500000000000004
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"file": "data/TEST/DR1/FAKS0/SI2203.WAV",
|
125 |
+
"ground_truth": "ðiɹizənzfɹðɪsdaɪvsimdfuliʃnaʊ",
|
126 |
+
"prediction": "ðərizɪənzfərðɪstaɪvsimdfulɪʃnaʊaʊaʊ",
|
127 |
+
"per": 0.3793103448275862,
|
128 |
+
"pwed": 0.18928571428571428
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"file": "data/TEST/DR1/FAKS0/SI943.WAV",
|
132 |
+
"ground_truth": "ɹdʌkʃinmeɪfɔlfɑɹbəloʊəkspikeɪʃnts",
|
133 |
+
"prediction": "prədəkʃənmeɪfɔlfɑrbɪloʊɛkspɛkteɪʃənzd",
|
134 |
+
"per": 0.3939393939393939,
|
135 |
+
"pwed": 0.13626126126126126
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"timestamp": "2024-12-05T09:36:14.568321"
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"task_id": "912449a4-d7ed-4af4-b5be-5c2c57ec09ff",
|
142 |
+
"model": "Jubliano/wav2vec2-large-xls-r-300m-ipa-INTERNATIONAL1.5",
|
143 |
+
"subset": "test",
|
144 |
+
"num_files": 1680,
|
145 |
+
"average_per": 0.6318471187460027,
|
146 |
+
"average_pwed": 0.222932144739126,
|
147 |
+
"detailed_results": [
|
148 |
+
{
|
149 |
+
"file": "data/TEST/DR1/FAKS0/SA1.WAV",
|
150 |
+
"ground_truth": "ʃihædjɹdɑɹksuɾɪŋgɹisiwɑʃwɑɾɹʔɔljiɹ",
|
151 |
+
"prediction": "ʒihɛldjydɑrksydənrisiwɑswadərɑlhir",
|
152 |
+
"per": 0.5454545454545454,
|
153 |
+
"pwed": 0.11764705882352941
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"file": "data/TEST/DR1/FAKS0/SA2.WAV",
|
157 |
+
"ground_truth": "oʊnæsmitikɛɹiinɔɪliɹæglaɪkðæt",
|
158 |
+
"prediction": "dɑnraːstɪkmədəkaːrənoːjliralɪkaːn",
|
159 |
+
"per": 0.7857142857142857,
|
160 |
+
"pwed": 0.2341954022988506
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"file": "data/TEST/DR1/FAKS0/SI1573.WAV",
|
164 |
+
"ground_truth": "hɪzkæpinwəsθɪnænhægɹdinɪzbjuɾuflbutswɹwɔɹninʃæbi",
|
165 |
+
"prediction": "xisʃktəʋɑstɪnɛnhɛɪɡərdɛnenzbjudəvɔlbutvɔːrʋɔrnənʃaːbi",
|
166 |
+
"per": 0.6595744680851063,
|
167 |
+
"pwed": 0.18382352941176472
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"file": "data/TEST/DR1/FAKS0/SI2203.WAV",
|
171 |
+
"ground_truth": "ðiɹizənzfɹðɪsdaɪvsimdfuliʃnaʊ",
|
172 |
+
"prediction": "dərizənsvərdəstajfzimtvuləsna",
|
173 |
+
"per": 0.6206896551724138,
|
174 |
+
"pwed": 0.11781609195402297
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"file": "data/TEST/DR1/FAKS0/SI943.WAV",
|
178 |
+
"ground_truth": "ɹdʌkʃinmeɪfɔlfɑɹbəloʊəkspikeɪʃnts",
|
179 |
+
"prediction": "pːdkəmeːvɑlvɑrbəloɛkspɛkteːʃəns",
|
180 |
+
"per": 0.5454545454545454,
|
181 |
+
"pwed": 0.2171717171717172
|
182 |
+
}
|
183 |
+
],
|
184 |
+
"timestamp": "2024-12-05T10:17:21.331572"
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"task_id": "c79df17e-2bb2-4253-ae26-f7cc6ab21265",
|
188 |
+
"model": "facebook/wav2vec2-xlsr-53-espeak-cv-ft",
|
189 |
+
"subset": "test",
|
190 |
+
"num_files": 1680,
|
191 |
+
"average_per": 0.348845592557092,
|
192 |
+
"average_pwed": 0.1386742019529415,
|
193 |
+
"detailed_results": [
|
194 |
+
{
|
195 |
+
"file": "data/TEST/DR1/FAKS0/SA1.WAV",
|
196 |
+
"ground_truth": "ʃihædjɹdɑɹksuɾɪŋgɹisiwɑʃwɑɾɹʔɔljiɹ",
|
197 |
+
"prediction": "ʃiːhædjɚdksuːtɪnɡɹiːsiwɑːʃwɑːɾɚɑːljɪ",
|
198 |
+
"per": 0.48484848484848486,
|
199 |
+
"pwed": 0.21338383838383837
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"file": "data/TEST/DR1/FAKS0/SA2.WAV",
|
203 |
+
"ground_truth": "oʊnæsmitikɛɹiinɔɪliɹæglaɪkðæt",
|
204 |
+
"prediction": "doːntæskmitəkæɹiənoɪliɹæɡlaɪkðæt",
|
205 |
+
"per": 0.32142857142857145,
|
206 |
+
"pwed": 0.12634408602150538
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"file": "data/TEST/DR1/FAKS0/SI1573.WAV",
|
210 |
+
"ground_truth": "hɪzkæpinwəsθɪnænhægɹdinɪzbjuɾuflbutswɹwɔɹninʃæbi",
|
211 |
+
"prediction": "hɪzkæptənwʌzθɪnænhæɡɚdændhɪzbjuːɾɪfʊbuːtswɚwoːnəndʃæbi",
|
212 |
+
"per": 0.3617021276595745,
|
213 |
+
"pwed": 0.13095238095238093
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"file": "data/TEST/DR1/FAKS0/SI2203.WAV",
|
217 |
+
"ground_truth": "ðiɹizənzfɹðɪsdaɪvsimdfuliʃnaʊ",
|
218 |
+
"prediction": "ðəɹiːzənzfɚðəsdɑːvsiːmdfuːlɪʃnæ",
|
219 |
+
"per": 0.3793103448275862,
|
220 |
+
"pwed": 0.12068965517241376
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"file": "data/TEST/DR1/FAKS0/SI943.WAV",
|
224 |
+
"ground_truth": "ɹdʌkʃinmeɪfɔlfɑɹbəloʊəkspikeɪʃnts",
|
225 |
+
"prediction": "pɹədʌkʃənmeɪfɑːlfɑːbəloʊɛkspɛkteɪʃənz",
|
226 |
+
"per": 0.36363636363636365,
|
227 |
+
"pwed": 0.14404761904761906
|
228 |
+
}
|
229 |
+
],
|
230 |
+
"timestamp": "2024-12-05T10:34:26.154521"
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"task_id": "f36060e6-a746-44dc-a527-54995b270053",
|
234 |
+
"model": "ginic/hyperparam_tuning_1_wav2vec2-large-xlsr-buckeye-ipa",
|
235 |
+
"subset": "test",
|
236 |
+
"num_files": 1680,
|
237 |
+
"average_per": 0.2766466385175833,
|
238 |
+
"average_pwed": 0.10410683992600853,
|
239 |
+
"detailed_results": [
|
240 |
+
{
|
241 |
+
"file": "data/TEST/DR1/FAKS0/SA1.WAV",
|
242 |
+
"ground_truth": "ʃihædjɹdɑɹksuɾɪŋgɹisiwɑʃwɑɾɹʔɔljiɹ",
|
243 |
+
"prediction": "ʃihædjɹ̩dɑɹksuɾɪnɡɹeɪsiwɑʃwɔɾɹ̩ɔljiɹ",
|
244 |
+
"per": 0.24242424242424243,
|
245 |
+
"pwed": 0.09926470588235292
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"file": "data/TEST/DR1/FAKS0/SA2.WAV",
|
249 |
+
"ground_truth": "oʊnæsmitikɛɹiinɔɪliɹæglaɪkðæt",
|
250 |
+
"prediction": "doʊndæskmidɪkæɹiɛnɔɪliɹæɡlaɪkðæʔ",
|
251 |
+
"per": 0.32142857142857145,
|
252 |
+
"pwed": 0.14192708333333334
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"file": "data/TEST/DR1/FAKS0/SI1573.WAV",
|
256 |
+
"ground_truth": "hɪzkæpinwəsθɪnænhægɹdinɪzbjuɾuflbutswɹwɔɹninʃæbi",
|
257 |
+
"prediction": "hɪzkæptɪnwʌzθɪnɛnhæɡɹ̩dɛnɪzbjuɾʌfl̩butswɹ̩wɔɹnɛnʃæbi",
|
258 |
+
"per": 0.2553191489361702,
|
259 |
+
"pwed": 0.05357142857142857
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"file": "data/TEST/DR1/FAKS0/SI2203.WAV",
|
263 |
+
"ground_truth": "ðiɹizənzfɹðɪsdaɪvsimdfuliʃnaʊ",
|
264 |
+
"prediction": "ðʌɹizʌnzfɹ̩ðʌstaɪvsimdfulɪʃnaʊ",
|
265 |
+
"per": 0.20689655172413793,
|
266 |
+
"pwed": 0.01293103448275862
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"file": "data/TEST/DR1/FAKS0/SI943.WAV",
|
270 |
+
"ground_truth": "ɹdʌkʃinmeɪfɔlfɑɹbəloʊəkspikeɪʃnts",
|
271 |
+
"prediction": "pɹʌdʌkʃʌnmeɪfɔlfɑɹbʌloʊɛkspɛkteɪʃʌns",
|
272 |
+
"per": 0.2727272727272727,
|
273 |
+
"pwed": 0.10416666666666667
|
274 |
+
}
|
275 |
+
],
|
276 |
+
"timestamp": "2024-12-05T11:06:07.981224"
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"task_id": "47d56349-8111-4bda-a47f-e007dbedd36d",
|
280 |
+
"model": "KoelLabs/xlsr-timit-a0",
|
281 |
+
"subset": "test",
|
282 |
+
"num_files": 1680,
|
283 |
+
"average_per": 0.24242141955346685,
|
284 |
+
"average_pwed": 0.17395311976938,
|
285 |
+
"detailed_results": [
|
286 |
+
{
|
287 |
+
"file": "data/TEST/DR1/FAKS0/SA1.WAV",
|
288 |
+
"ground_truth": "ʃihædjɹdɑɹksuɾɪŋgɹisiwɑʃwɑɾɹʔɔljiɹ",
|
289 |
+
"prediction": "ʃihædjɹdɑɹksuɾɪnɡɹisiwɑʃwɔɾɹʔɔljɪɹ",
|
290 |
+
"per": 0.12121212121212122,
|
291 |
+
"pwed": 0.037990196078431376
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"file": "data/TEST/DR1/FAKS0/SA2.WAV",
|
295 |
+
"ground_truth": "oʊnæsmitikɛɹiinɔɪliɹæglaɪkðæt",
|
296 |
+
"prediction": "ɪoʊnæskmitikæɹinɔɪliɹæɡlaɪkðt",
|
297 |
+
"per": 0.21428571428571427,
|
298 |
+
"pwed": 0.1695402298850575
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"file": "data/TEST/DR1/FAKS0/SI1573.WAV",
|
302 |
+
"ground_truth": "hɪzkæpinwəsθɪnænhægɹdinɪzbjuɾuflbutswɹwɔɹninʃæbi",
|
303 |
+
"prediction": "hɪzkæpinwəsθɪninhæɡɹdinhizbjuɾiflbutswɹwɔɹnintʃæbi",
|
304 |
+
"per": 0.1276595744680851,
|
305 |
+
"pwed": 0.06499999999999999
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"file": "data/TEST/DR1/FAKS0/SI2203.WAV",
|
309 |
+
"ground_truth": "ðiɹizənzfɹðɪsdaɪvsimdfuliʃnaʊ",
|
310 |
+
"prediction": "ðəɹiznzfɹðistaɪ",
|
311 |
+
"per": 0.5862068965517241,
|
312 |
+
"pwed": 0.4899425287356322
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"file": "data/TEST/DR1/FAKS0/SI943.WAV",
|
316 |
+
"ground_truth": "ɹdʌkʃinmeɪfɔlfɑɹbəloʊəkspikeɪʃnts",
|
317 |
+
"prediction": "ɹidʌkʃinmeɪfɔlfɑɹbəloʊɛkspɛkeɪ",
|
318 |
+
"per": 0.21212121212121213,
|
319 |
+
"pwed": 0.1553030303030303
|
320 |
+
}
|
321 |
+
],
|
322 |
+
"timestamp": "2024-12-12T15:53:07.584096"
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"task_id": "51dd5735-63bd-4fe5-a588-c0fc079076e0",
|
326 |
+
"model": "KoelLabs/xlsr-timit-a0",
|
327 |
+
"subset": "test",
|
328 |
+
"num_files": 1680,
|
329 |
+
"average_per": 0.24242141955346685,
|
330 |
+
"average_pwed": 0.17395311976938,
|
331 |
+
"detailed_results": [
|
332 |
+
{
|
333 |
+
"file": "data/TEST/DR1/FAKS0/SA1.WAV",
|
334 |
+
"ground_truth": "ʃihædjɹdɑɹksuɾɪŋgɹisiwɑʃwɑɾɹʔɔljiɹ",
|
335 |
+
"prediction": "ʃihædjɹdɑɹksuɾɪnɡɹisiwɑʃwɔɾɹʔɔljɪɹ",
|
336 |
+
"per": 0.12121212121212122,
|
337 |
+
"pwed": 0.037990196078431376
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"file": "data/TEST/DR1/FAKS0/SA2.WAV",
|
341 |
+
"ground_truth": "oʊnæsmitikɛɹiinɔɪliɹæglaɪkðæt",
|
342 |
+
"prediction": "ɪoʊnæskmitikæɹinɔɪliɹæɡlaɪkðt",
|
343 |
+
"per": 0.21428571428571427,
|
344 |
+
"pwed": 0.1695402298850575
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"file": "data/TEST/DR1/FAKS0/SI1573.WAV",
|
348 |
+
"ground_truth": "hɪzkæpinwəsθɪnænhægɹdinɪzbjuɾuflbutswɹwɔɹninʃæbi",
|
349 |
+
"prediction": "hɪzkæpinwəsθɪninhæɡɹdinhizbjuɾiflbutswɹwɔɹnintʃæbi",
|
350 |
+
"per": 0.1276595744680851,
|
351 |
+
"pwed": 0.06499999999999999
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"file": "data/TEST/DR1/FAKS0/SI2203.WAV",
|
355 |
+
"ground_truth": "ðiɹizənzfɹðɪsdaɪvsimdfuliʃnaʊ",
|
356 |
+
"prediction": "ðəɹiznzfɹðistaɪ",
|
357 |
+
"per": 0.5862068965517241,
|
358 |
+
"pwed": 0.4899425287356322
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"file": "data/TEST/DR1/FAKS0/SI943.WAV",
|
362 |
+
"ground_truth": "ɹdʌkʃinmeɪfɔlfɑɹbəloʊəkspikeɪʃnts",
|
363 |
+
"prediction": "ɹidʌkʃinmeɪfɔlfɑɹbəloʊɛkspɛkeɪ",
|
364 |
+
"per": 0.21212121212121213,
|
365 |
+
"pwed": 0.1553030303030303
|
366 |
+
}
|
367 |
+
],
|
368 |
+
"timestamp": "2024-12-12T16:07:25.389475"
|
369 |
+
}
|
370 |
+
]
|
queue/tasks.json
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"id": "721b4c64-a825-42d3-bb0a-bdff9ee1ed0f",
|
4 |
+
"model": "facebook/wav2vec2-lv-60-espeak-cv-ft",
|
5 |
+
"subset": "test",
|
6 |
+
"submission_name": "facebook espeak",
|
7 |
+
"github_url": "https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md",
|
8 |
+
"status": "completed",
|
9 |
+
"submitted_at": "2024-12-05T07:19:03.076292"
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"id": "d6fe0956-b5b4-4105-835e-8dee1872ee4d",
|
13 |
+
"model": "KoelLabs/xlsr-timit-b0",
|
14 |
+
"subset": "test",
|
15 |
+
"submission_name": "english phoneme model",
|
16 |
+
"github_url": "https://github.com/KoelLabs/",
|
17 |
+
"status": "completed",
|
18 |
+
"submitted_at": "2024-12-05T08:12:40.161444"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"id": "dbf4642a-fb13-402c-8a74-cc41fc4be599",
|
22 |
+
"model": "speech31/wav2vec2-large-TIMIT-IPA",
|
23 |
+
"subset": "test",
|
24 |
+
"submission_name": "speech 31 model",
|
25 |
+
"github_url": "https://huggingface.co/speech31/wav2vec2-large-TIMIT-IPA2",
|
26 |
+
"status": "completed",
|
27 |
+
"submitted_at": "2024-12-05T09:13:45.315361"
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"id": "4e3b80be-b255-47f2-b4ae-18a12e232e8a",
|
31 |
+
"model": "Jubliano/wav2vec2-large-xls-r-300m-ipa-INTERNATIONAL1.5",
|
32 |
+
"subset": "test",
|
33 |
+
"submission_name": "Jubliano model",
|
34 |
+
"github_url": "https://huggingface.co/Jubliano/wav2vec2-large-xls-r-300m-ipa-INTERNATIONAL1.5WithoutSpaces/tree/d5312009d8e620b183c334dfdd9ffc6b4f06f8c1",
|
35 |
+
"status": "processing",
|
36 |
+
"submitted_at": "2024-12-05T09:36:14.571930"
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"id": "912449a4-d7ed-4af4-b5be-5c2c57ec09ff",
|
40 |
+
"model": "Jubliano/wav2vec2-large-xls-r-300m-ipa-INTERNATIONAL1.5",
|
41 |
+
"subset": "test",
|
42 |
+
"submission_name": "jubiliano model wav2vec2",
|
43 |
+
"github_url": "https://huggingface.co/Jubliano/wav2vec2-large-xls-r-300m-ipa-INTERNATIONAL1.5WithoutSpaces/tree/d5312009d8e620b183c334dfdd9ffc6b4f06f8c1",
|
44 |
+
"status": "completed",
|
45 |
+
"submitted_at": "2024-12-05T10:01:40.502935"
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"id": "c79df17e-2bb2-4253-ae26-f7cc6ab21265",
|
49 |
+
"model": "facebook/wav2vec2-xlsr-53-espeak-cv-ft",
|
50 |
+
"subset": "test",
|
51 |
+
"submission_name": "xlsr 53 model",
|
52 |
+
"github_url": "https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md",
|
53 |
+
"status": "completed",
|
54 |
+
"submitted_at": "2024-12-05T10:18:37.408664"
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"id": "f36060e6-a746-44dc-a527-54995b270053",
|
58 |
+
"model": "ginic/hyperparam_tuning_1_wav2vec2-large-xlsr-buckeye-ipa",
|
59 |
+
"subset": "test",
|
60 |
+
"submission_name": "ginic model wav2vec2 finetuned on buckeye",
|
61 |
+
"github_url": "https://huggingface.co/ginic/vary_individuals_old_only_1_wav2vec2-large-xlsr-buckeye-ipa",
|
62 |
+
"status": "completed",
|
63 |
+
"submitted_at": "2024-12-05T10:36:02.340422"
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"id": "abf6c247-9faf-46ef-b0fa-25f2669da922",
|
67 |
+
"model": "KoelLabs/xlsr-timit-a0",
|
68 |
+
"subset": "test",
|
69 |
+
"submission_name": "Koel Labs early version of finetuned model ",
|
70 |
+
"github_url": "https://github.com/KoelLabs/ML",
|
71 |
+
"status": "processing",
|
72 |
+
"submitted_at": "2024-12-05T11:08:23.663553"
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"id": "47d56349-8111-4bda-a47f-e007dbedd36d",
|
76 |
+
"model": "KoelLabs/xlsr-timit-a0",
|
77 |
+
"subset": "test",
|
78 |
+
"submission_name": "koel labs initial ",
|
79 |
+
"github_url": "https://github.com/KoelLabs/ML/",
|
80 |
+
"status": "completed",
|
81 |
+
"submitted_at": "2024-12-12T15:28:12.923626"
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"id": "51dd5735-63bd-4fe5-a588-c0fc079076e0",
|
85 |
+
"model": "KoelLabs/xlsr-timit-a0",
|
86 |
+
"subset": "test",
|
87 |
+
"submission_name": "koel labs initial ",
|
88 |
+
"github_url": "https://github.com/KoelLabs/ML/",
|
89 |
+
"status": "completed",
|
90 |
+
"submitted_at": "2024-12-12T15:53:07.620070"
|
91 |
+
}
|
92 |
+
]
|