File size: 4,699 Bytes
182c7c5
c00e791
 
 
 
182c7c5
 
c00e791
 
 
 
 
182c7c5
c00e791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182c7c5
 
c00e791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182c7c5
c00e791
 
 
 
182c7c5
c00e791
 
182c7c5
c00e791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182c7c5
 
 
c00e791
 
 
 
 
 
182c7c5
c00e791
 
 
182c7c5
c00e791
182c7c5
c00e791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182c7c5
c00e791
182c7c5
c00e791
 
 
 
 
 
 
 
 
 
 
 
182c7c5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
from ctransformers import AutoModelForCausalLM

model_name = "lmstudio-community/Devstral-Small-2505-GGUF"
model_file = "devstral-small-2505.Q4_K_M.gguf"  # Выберем версию с квантизацией Q4_K_M для экономии памяти

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    model_file=model_file,
    model_type="mistral",
    gpu_layers=50,  # Используем GPU насколько возможно
    context_length=4096  # Максимальный контекст
)

def generate_text(prompt, max_tokens=512, temperature=0.7, top_p=0.9):
    # Форматируем запрос в стиле Mistral
    formatted_prompt = f"<s>[INST] {prompt} [/INST]"
    
    # Генерируем ответ
    response = model(
        formatted_prompt,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=1.1,
        stream=False
    )
    
    # Удаляем исходный запрос из ответа
    return response.replace(formatted_prompt, "").strip()

custom_css = """
:root {
    --primary-color: #4F46E5;
    --secondary-color: #6366F1;
    --background-color: #F9FAFB;
    --surface-color: #FFFFFF;
    --text-color: #1F2937;
    --border-radius: 10px;
}

body {
    background-color: var(--background-color);
}

.container {
    max-width: 900px;
    margin: auto;
    padding-top: 1.5rem;
}

.title {
    text-align: center;
    color: var(--primary-color);
    font-size: 2.2rem;
    font-weight: 700;
    margin-bottom: 0.5rem;
}

.subtitle {
    text-align: center;
    color: var(--text-color);
    opacity: 0.8;
    margin-bottom: 2rem;
}

footer {display: none !important;}

.gradio-container {
    font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
}

.gr-button {
    border-radius: var(--border-radius) !important;
}

.gr-button-primary {
    background-color: var(--primary-color) !important;
}

.gr-input, .gr-textarea {
    border-radius: var(--border-radius) !important;
    border: 1px solid #E5E7EB !important;
}

.gr-box {
    border-radius: var(--border-radius) !important;
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06) !important;
    background-color: var(--surface-color) !important;
    padding: 1.5rem !important;
}

.advanced-options {
    margin-top: 1rem;
    padding: 1rem;
    border-radius: var(--border-radius);
    background: #F3F4F6;
}

.footer-text {
    text-align: center;
    margin-top: 1rem;
    color: var(--text-color);
    opacity: 0.7;
    font-size: 0.9rem;
}
"""

with gr.Blocks(css=custom_css) as demo:
    with gr.Column(elem_classes="container"):
        gr.Markdown("# Devstral Code Assistant", elem_classes="title")
        gr.Markdown("Powered by Devstral-Small-2505 - Specialized for code generation", elem_classes="subtitle")
        
        with gr.Box():
            prompt = gr.Textbox(
                placeholder="Write a function in Python to implement a binary search tree", 
                label="Your Request",
                lines=5
            )
            
            with gr.Row():
                submit_btn = gr.Button("Generate Code", variant="primary", scale=2)
                clear_btn = gr.Button("Clear", scale=1)
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    with gr.Column():
                        max_tokens = gr.Slider(
                            minimum=64, maximum=2048, value=512, step=64,
                            label="Maximum Output Length"
                        )
                    with gr.Column():
                        temperature = gr.Slider(
                            minimum=0.1, maximum=1.0, value=0.7, step=0.1,
                            label="Temperature (Creativity)"
                        )
                with gr.Row():
                    with gr.Column():
                        top_p = gr.Slider(
                            minimum=0.1, maximum=1.0, value=0.9, step=0.05,
                            label="Top-p (Nucleus Sampling)"
                        )
            
            output = gr.Textbox(
                label="Generated Code", 
                lines=12,
                show_copy_button=True
            )
        
        gr.Markdown(
            "⚡ Optimized for code generation and technical tasks", 
            elem_classes="footer-text"
        )
    
    submit_btn.click(
        generate_text, 
        inputs=[prompt, max_tokens, temperature, top_p], 
        outputs=output
    )
    clear_btn.click(lambda: "", None, prompt)

demo.launch()