File size: 7,902 Bytes
89f33a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import time
import threading
import gradio as gr
import modelscope_studio.components.antd as antd
import modelscope_studio.components.antdx as antdx
import modelscope_studio.components.base as ms
import modelscope_studio.components.pro as pro
from modelscope_studio.components.pro.chatbot import (
    ChatbotBotConfig,
    ChatbotPromptsConfig,
    ChatbotUserConfig,
    ChatbotWelcomeConfig
)
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch

# Load the Sarvam AI model and tokenizer
model_name = "sarvamai/sarvam-m"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")

def prompt_select(e: gr.EventData):
    return gr.update(value=e._data["payload"][0]["value"]["description"])

def clear():
    return gr.update(value=None)

def retry(chatbot_value, e: gr.EventData):
    index = e._data["payload"][0]["index"]
    chatbot_value = chatbot_value[:index]

    yield gr.update(loading=True), gr.update(value=chatbot_value), gr.update(disabled=True)
    for chunk in submit(None, chatbot_value):
        yield chunk

def cancel(chatbot_value):
    chatbot_value[-1]["loading"] = False
    chatbot_value[-1]["status"] = "done"
    chatbot_value[-1]["footer"] = "Chat completion paused"
    return gr.update(value=chatbot_value), gr.update(loading=False), gr.update(disabled=False)

def format_history(history):
    messages = [{"role": "system", "content": "You are a helpful assistant."}]
    for item in history:
        if item["role"] == "user":
            messages.append({"role": "user", "content": item["content"]})
        elif item["role"] == "assistant":
            messages.append({"role": "assistant", "content": item["content"][-1]["content"]})
    return messages

def generate_response(messages, chatbot_value, sender, clear_btn):
    text = tokenizer.apply_chat_template(messages, tokenize=False, enable_thinking=True)
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        **model_inputs,
        streamer=streamer,
        max_new_tokens=8192,
        do_sample=True,
        temperature=0.7
    )

    thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    thought_done = False
    start_time = time.time()
    message_content = chatbot_value[-1]["content"]
    message_content.append({
        "copyable": False,
        "editable": False,
        "type": "tool",
        "content": "",
        "options": {"title": "Thinking..."}
    })
    message_content.append({"type": "text", "content": "",})

    reasoning_content = ""
    content = ""
    for new_text in streamer:
        if "</think>" in new_text:
            reasoning_content = new_text.split("</think>")[0].rstrip("\n")
            content = new_text.split("</think>")[-1].lstrip("\n").rstrip("</s>")
        else:
            content = new_text

        chatbot_value[-1]["loading"] = False
        if reasoning_content and not thought_done:
            message_content[-2]["content"] = reasoning_content
            thought_done = True
            thought_cost_time = "{:.2f}".format(time.time() - start_time)
            message_content[-2]["options"]["title"] = f"End of Thought ({thought_cost_time}s)"
            message_content[-2]["options"]["status"] = "done"
        message_content[-1]["content"] += content
        yield {
            clear_btn: gr.update(disabled=False),
            sender: gr.update(loading=False),
            chatbot: gr.update(value=chatbot_value),
        }

    chatbot_value[-1]["footer"] = "{:.2f}".format(time.time() - start_time) + 's'
    chatbot_value[-1]["status"] = "done"
    yield {
        clear_btn: gr.update(disabled=False),
        sender: gr.update(loading=False),
        chatbot: gr.update(value=chatbot_value),
    }

def submit(sender_value, chatbot_value):
    if sender_value is not None:
        chatbot_value.append({"role": "user", "content": sender_value})
    history_messages = format_history(chatbot_value)
    chatbot_value.append({"role": "assistant", "content": [], "loading": True, "status": "pending"})
    yield {
        sender: gr.update(value=None, loading=True),
        clear_btn: gr.update(disabled=True),
        chatbot: gr.update(value=chatbot_value)
    }

    try:
        for chunk in generate_response(history_messages, chatbot_value, sender, clear_btn):
            yield chunk
    except Exception as e:
        chatbot_value[-1]["loading"] = False
        chatbot_value[-1]["status"] = "done"
        chatbot_value[-1]["content"] = "Failed to respond, please try again."
        yield {
            clear_btn: gr.update(disabled=False),
            sender: gr.update(loading=False),
            chatbot: gr.update(value=chatbot_value),
        }
        raise e

with gr.Blocks() as demo, ms.Application(), antdx.XProvider():
    with antd.Flex(vertical=True, gap="middle"):
        chatbot = pro.Chatbot(
            height=600,
            welcome_config=ChatbotWelcomeConfig(
                variant="borderless",
                icon="https://cdn-avatars.huggingface.co/v1/production/uploads/60270a7c32856987162c641a/umd13GCWVijwTDGZzw3q-.png",
                title=f"Hello, I'm Sarvam AI",
                description="You can input text to get started.",
                prompts=ChatbotPromptsConfig(
                    title="How can I help you today?",
                    styles={
                        "list": {"width": '100%'},
                        "item": {"flex": 1},
                    },
                    items=[
                        {
                            "label": "πŸ“… Make a plan",
                            "children": [
                                {"description": "Help me with a plan to start a business"},
                                {"description": "Help me with a plan to achieve my goals"},
                                {"description": "Help me with a plan for a successful interview"}
                            ]
                        },
                        {
                            "label": "πŸ–‹ Help me write",
                            "children": [
                                {"description": "Help me write a story with a twist ending"},
                                {"description": "Help me write a blog post on mental health"},
                                {"description": "Help me write a letter to my future self"}
                            ]
                        }
                    ]
                )
            ),
            user_config=ChatbotUserConfig(avatar="https://api.dicebear.com/7.x/miniavs/svg?seed=3"),
            bot_config=ChatbotBotConfig(
                header="Sarvam AI",
                avatar="https://cdn-avatars.huggingface.co/v1/production/uploads/60270a7c32856987162c641a/umd13GCWVijwTDGZzw3q-.png",
                actions=["copy", "retry"]
            ),
        )

        with antdx.Sender() as sender:
            with ms.Slot("prefix"):
                with antd.Button(value=None, color="default", variant="text") as clear_btn:
                    with ms.Slot("icon"):
                        antd.Icon("ClearOutlined")
        clear_btn.click(fn=clear, outputs=[chatbot])
        submit_event = sender.submit(fn=submit, inputs=[sender, chatbot], outputs=[sender, chatbot, clear_btn])
        sender.cancel(fn=cancel, inputs=[chatbot], outputs=[chatbot, sender, clear_btn], cancels=[submit_event], queue=False)
        chatbot.retry(fn=retry, inputs=[chatbot], outputs=[sender, chatbot, clear_btn])
        chatbot.welcome_prompt_select(fn=prompt_select, outputs=[sender])

if __name__ == "__main__":
    demo.launch(mcp_server=True)