import spaces import torch import gradio as gr from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read import tempfile import os MODEL_NAME = "ylacombe/whisper-large-v3-turbo" BATCH_SIZE = 1 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=1, device=device, ) @spaces.GPU def transcribe(inputs, previous_transcription): previous_transcription += pipe(inputs[1], batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"] return previous_transcription with gr.Blocks() as demo: with gr.Column(): input_audio_microphone = gr.Audio(streaming=True) output = gr.Textbox(label="Transcription", value="") input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output], time_limit=15, stream_every=1, concurrency_limit=None) demo.queue().launch()