import spaces import torch import gradio as gr from transformers import pipeline import tempfile import os import uuid import scipy.io.wavfile import numpy as np MODEL_NAME = "ylacombe/whisper-large-v3-turbo" BATCH_SIZE = 8 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) @spaces.GPU def transcribe(inputs, previous_transcription): try: sample_rate, audio_data = inputs # Convert audio data to a NumPy array of floats normalized between -1 and 1 audio_data = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0 # Perform transcription transcription = pipe(audio_data, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True) # Append new transcription to previous transcription previous_transcription += transcription["text"] return previous_transcription except Exception as e: print(f"Error during transcription: {e}") return previous_transcription with gr.Blocks() as demo: with gr.Column(): gr.Markdown(f"# Realtime Whisper Large V3 Turbo: Transcribe Audio\n Transcribe inputs in Realtime. This Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.") input_audio_microphone = gr.Audio(streaming=True) output = gr.Textbox(label="Transcription", value="") input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output], time_limit=45, stream_every=2, concurrency_limit=None) demo.queue().launch()