import spaces import torch import gradio as gr from transformers import pipeline import tempfile import os import uuid MODEL_NAME = "ylacombe/whisper-large-v3-turbo" BATCH_SIZE = 8 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) @spaces.GPU def transcribe(inputs, previous_transcription): try: # Generate a unique filename using UUID filename = f"{uuid.uuid4().hex}.wav" filepath = os.path.join(tempfile.gettempdir(), filename) # Save the audio data to the temporary file with open(filepath, "wb") as f: f.write(inputs[1]) previous_transcription += pipe(filepath, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"] # Remove the temporary file after transcription os.remove(filepath) return previous_transcription except Exception as e: print(f"Error during transcription: {e}") return previous_transcription # Return the current transcription if an error occurs with gr.Blocks() as demo: with gr.Column(): input_audio_microphone = gr.Audio(streaming=True) output = gr.Textbox(label="Transcription", value="") input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output], time_limit=45, stream_every=2, concurrency_limit=None) demo.queue().launch()